精英家教网 > 高中数学 > 题目详情
6.设椭圆$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)的左右焦点分别为F1、F2,点P(a,b)满足|F1F2|=|PF2|,设直线PF2与椭圆交于M、N两点,若|MN|=16,则椭圆的方程为(  )
A.$\frac{x^2}{144}+\frac{y^2}{108}=1$B.$\frac{x^2}{100}+\frac{y^2}{75}=1$C.$\frac{x^2}{36}+\frac{y^2}{27}=1$D.$\frac{x^2}{16}+\frac{y^2}{12}=1$

分析 先确定a=2c,b=$\sqrt{3}$c,可得椭圆方程为3x2+4y2=12c2,直线PF2的方程为y=$\sqrt{3}$(x-c),代入椭圆方程,消去y并整理,求出M,N的坐标,利用|MN|=16,可求椭圆的方程.

解答 解:因为点P(a,b)满足|F1F2|=|PF2|,所以$\sqrt{(a-c)^{2}+{b}^{2}}$=2c,
整理得2e2+e-1=0,
所以e=$\frac{1}{2}$.
所以a=2c,b=$\sqrt{3}$c,可得椭圆方程为3x2+4y2=12c2
直线PF2的方程为y=$\sqrt{3}$(x-c),
代入椭圆方程,消去y并整理,得5x2-8cx=0,解得x=0或$\frac{8}{5}$c,
得M(0,-$\sqrt{3}$c),N($\frac{8}{5}$c,$\frac{3\sqrt{3}}{5}$c),
所以|MN|=$\frac{16}{5}$c=16,
所以c=5,
所以椭圆方程为$\frac{{x}^{2}}{100}+\frac{{y}^{2}}{75}=1$.
故选:B.

点评 本题考查了椭圆的定义标准方程及其性质、直线与椭圆的位置关系,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

16.一个数无论从左边念,还是从右边念都是同一个数,则这个数称为“回文数”,如11、22是两位“回文数”,111、101是三位“回文数”,则5位“回文数”的个数有900个.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.设函数f(x)=$\left\{\begin{array}{l}{x(x-2),x≤0}\\{-ax(x+2),x>0}\end{array}\right.$是一个奇函数,满足f(2t+3)<f(4-t),则a=1,t的取值范围是($\frac{1}{3}$,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.在△ABC中,内角A,B,C所对的边分别为a,b,c,已知sinC+sin(B-A)=$\sqrt{2}$sin2A,A≠$\frac{π}{2}$.
(Ⅰ)求角A的取值范围;
(Ⅱ)若a=1,△ABC的面积S=$\frac{\sqrt{3}+1}{4}$,C为钝角,求角A的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知双曲线$\frac{{y}^{2}}{2}$-$\frac{{x}^{2}}{{a}^{2}}$=1过点(-1,2),则该双曲线的渐近线方程为(  )
A.y=±$\frac{5\sqrt{2}}{2}$B.y=±xC.y=±$\sqrt{2}$xD.y=±$\frac{\sqrt{2}}{2}$x

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知等差数列{an}的公差d=$\int_{-\frac{π}{2}}^{\frac{π}{2}}{cosxdx}$,a42-a22=56;等比数列{bn}满足:b1=1,b2b4b6=512,n∈N*
(1)求数列{an}和{bn}的通项公式;
(2)设{an}的前n项和为Sn,令cn=$\left\{{\begin{array}{l}{\frac{2}{S_n},n为奇数}\\{{b_n},n为偶数}\end{array}}$,求c1+c2+c3+…+c2n

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.在三行三列的方阵$(\begin{array}{l}{a_{11}}{a_{12}}{a_{13}}\\{a_{21}}{a_{22}}{a_{23}}\\{a_{31}}{a_{32}}{a_{33}}\end{array})$中有9个数aij(i=1,2,3;j=1,2,3),从中任取三个数,则三个数中任两个不同行不同列的概率是$\frac{1}{14}$.(结果用分数表示)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.数列{an}是公差不为零的等差数列,a5=6.数列{bn}满足:b1=3,bn+1=b1b2b3…bn+1.
(Ⅰ)当n≥2时,求证:$\frac{{{b_{n+1}}-1}}{{{b_n}-1}}$=bn
(Ⅱ)当a3>1且a3∈N*时,a3,a5,ak1,ak2,…,akn,…为等比数列.(i)求a3;(ii)当a3取最小值时,求证:$\frac{1}{b_1}$+$\frac{1}{b_2}$+$\frac{1}{b_3}$+…+$\frac{1}{b_n}$>4(${\frac{1}{{{a_{k_1}}-1}}$+$\frac{1}{{{a_{k_2}}-1}}$+$\frac{1}{{{a_{k_3}}-1}}$+…+$\frac{1}{{{a_{k_n}}-1}}}$).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知等差数列{an}满足a2+a4+a2012+a2014=8,且Sn是该数列的前n和,则S2015=4030.

查看答案和解析>>

同步练习册答案