精英家教网 > 高中数学 > 题目详情
10.在△ABC中,角A,B,C的对边分别为a,b,c,若B=60°,且a,b,c成等比数列,则A=60度,C=60度.

分析 利用等比数列的性质、余弦定理即可得出.

解答 解:∵a,b,c成等比数列,
∴b2=ac,
∴cos60°=$\frac{{a}^{2}+{c}^{2}-{b}^{2}}{2ac}$=$\frac{{a}^{2}+{c}^{2}-ac}{2ac}$,
化为:(a-c)2=0,解得a=c.
∴△ABC是等边三角形,
∴A=C=60°.
故答案分别为:60°;60°

点评 本题考查了等比数列的性质、余弦定理,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

20.在平面直角坐标系xOy中,已知点A(2,4),直线l:x-2y+1=0.
(1)求过点A且平行于l的直线的方程;
(2)若点M在直线l上,且AM⊥l,求点M的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.若二项式($\sqrt{x}$-$\frac{2}{x}$)n的展开式共有7项,则n=6;展开式中的第三项的系数为60.(用数字作答)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知A={x|x2-2mx+m2-1<0},B={x|$\frac{1}{2}$<x<$\frac{2}{3}$},若B?A,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知tanα=2,tanβ=3,且α、β都是锐角,则tan$\frac{α+β}{2}$=1+$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知函数f(x)=ax2-bx+2,且f(x)<0的解集为(1,2).
(1)求f(x)的解析式;
(2)求f(x)在区间[-1,3]上的最大值与最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.如图,在几何体ABCDE中,四边形ABCD是矩形,AB⊥平面BEC,BE⊥EC,AB=BE=EC=2,G是线段BE的中点,点F在线段CD上且GF∥平面ADE.
(Ⅰ)求CF长;
(Ⅱ)求平面AEF与平面AFG的夹角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.在复平面内,若复数z1和z2对应的点分别是A(-2,-1)和B(0,1),则$\frac{{z}_{2}}{{z}_{1}}$=(  )
A.-$\frac{1}{5}$-$\frac{2}{5}$iB.-$\frac{2}{5}$-$\frac{1}{5}$iC.$\frac{1}{5}$+$\frac{2}{5}$iD.$\frac{2}{5}$+$\frac{1}{5}$i

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.在平面直角坐标系中,O为坐标原点,A、B、C三点满足$\overrightarrow{OC}$=$\frac{1}{3}$$\overrightarrow{OA}$+$\frac{2}{3}$$\overrightarrow{OB}$.
(Ⅰ)求证:A、B、C三点共线;
(Ⅱ)已知A(1,cosx),B(1+cosx,cosx)(0≤x≤$\frac{π}{2}$),f(x)=$\overrightarrow{OA}$•$\overrightarrow{OC}$-(2m+$\frac{2}{3}$)•|$\overrightarrow{AB}$|的最小值为-$\frac{3}{2}$,求实数m的值.

查看答案和解析>>

同步练习册答案