精英家教网 > 高中数学 > 题目详情
用1,2,3,4,5,6组成六位数(没有重复数字),要求任何相邻两个数字的奇偶性不同,且1和2不相邻,这样的六位数的个数是
 
(用数字作答).
考点:排列、组合及简单计数问题
专题:应用题,排列组合
分析:欲求可组成符合条件的六位数的个数,先考虑任何相邻两个数字的奇偶性不同,且1和2相邻,再利用间接法求解.
解答: 解:任何相邻两个数字的奇偶性不同,且1和2相邻,可分三步来做这件事:
第一步:先将3、5排列,共有A22种排法;
第二步:再将4、6插空排列,共有2A22种排法;
第三步:将1、2放到3、5、4、6形成的空中,共有C51种排法.
由分步乘法计数原理得共有A22•2A22•C51=40(种).
又任何相邻两个数字的奇偶性不同,共有2
A
3
3
A
3
3
=72种,
∴任何相邻两个数字的奇偶性不同,且1和2不相邻,这样的六位数的个数是72-40=32.
故答案为:32
点评:本题考查的是分步计数原理,考查间接法,考查学生的计算能力,比较基础.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

给出下列命题:
(1)函数f(x)=2xln(x-2)-3只有一个零点;
(2)若
a
b
不共线,则
a
+
b
a
-
b
不共线;
(3)若非零平面向量
a
b
c
两两所成的夹角均相等,则夹角为120°;
(4)若数列{an}的前n项的和Sn=2n+1-1,则数列{an}是等比数列;
(5)函数y=2x的图象经过一定的平移可以得到函数y=3•2x-1的图象.
其中,所有正确命题的序号为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,角A,B,C的对边分别为a,b,c,已知∠B=30°,△ABC的面积为
3
2

(Ⅰ)当a,b,c成等差数列时,求b;
(Ⅱ)求AC边上的中线BD的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

设集合M={x|0≤x≤2},N={x|0≤y≤2},给出下四个图形,其中能构成从集合M到集合N的函数关系的是(  )
A、
B、
C、
D、

查看答案和解析>>

科目:高中数学 来源: 题型:

将函数y=sin2x(x∈R)的图象分别向左平移m(m>0)个单位,向右平移n(n>0)个单位,所得到的两个图象都与函数y=sin(2x+
π
6
)的图象重合,则m+n的最小值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,a,b,c分别为A,B,C的对边,若sinA、sinB、sinC依次成等比数列,则角B的取值范围是(  )
A、(0,
π
6
]
B、(0,
π
3
]
C、[
π
3
π
2
D、[
π
6
π
2

查看答案和解析>>

科目:高中数学 来源: 题型:

若函数f(x)满足f(x+1)=3x-1,则f(x)的解析式为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,角A,B,C的对边分别为a,b,c,满足asinAsinB+bcos2A=
2
a,
CA
CB
=a2
(1)求角C的大小;
(2)若c=2
2
,求△ABC的面积S.

查看答案和解析>>

科目:高中数学 来源: 题型:

若f(x)=(1-x2)(1+x)5,则其解析式中x3的系数为
 

查看答案和解析>>

同步练习册答案