精英家教网 > 高中数学 > 题目详情

已知F1,F2为双曲线Ax2-By2=1的焦点,其顶点是线段F1F2的三等分点,则其渐近线的方程为(  )

(A)y=±2x      (B)y=±x

(C)y=±x            (D)y=±2x或y=±x


D

解析:由题意c=3a,∴c2=9a2,

又 c2=a2+b2,

=8, =2,=,

∴双曲线渐近线方程为y=±2x或y=±x.故选D.


练习册系列答案
相关习题

科目:高中数学 来源: 题型:


函数f(x)=sin(2x-)在区间[0, ]上的最小值为(  )

(A)-1   (B)-    (C) (D)0

查看答案和解析>>

科目:高中数学 来源: 题型:


下列曲线中离心率为的是(  )

(A) -=1  (B) -=1

(C) -=1  (D) -=1

查看答案和解析>>

科目:高中数学 来源: 题型:


 直线与双曲线位置关系的判定及应用 

 已知双曲线C的方程为-=1(a>0,b>0),离心率e=,顶点到渐近线的距离为.

 (1)求双曲线C的方程;

(2)如图,P是双曲线C上一点,A、B两点在双曲线C的两条渐近线上,且分别位于第一、二象限.

,λ∈.求△AOB的面积的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:


已知双曲线-=1(a>0,b>0)的离心率为,则双曲线的渐近线方程

为(  )

(A)y=±x    (B)y=±x

(C)y=±2x        (D)y=±x

查看答案和解析>>

科目:高中数学 来源: 题型:


已知△ABC的三边长|AB|=,|BC|=4,|AC|=1,动点M满足,且λμ=.

(1)求||最小值,并指出此时,的夹角;

(2)是否存在两定点F1,F2使|||-|||恒为常数k?若存在,指出常数k的值,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:


设椭圆C: +=1(a>b>0)的左、右焦点分别为F1,F2,P是C上的点,PF2⊥F1F2,∠PF1F2=30°,则C的离心率为(  )

(A)        (B)         (C)  (D)

查看答案和解析>>

科目:高中数学 来源: 题型:


已知点F1、F2分别是椭圆x2+2y2=2的左、右焦点,点P是该椭圆上的一个动点,则的最小值是    . 

查看答案和解析>>

科目:高中数学 来源: 题型:


点A为两曲线C1: +=1和C2:x2-=1在第二象限的交点,B、C为曲线C1的左、右焦点,线段BC上一点P满足: =+m(+),则实数m的值为    . 

查看答案和解析>>

同步练习册答案