已知△ABC的三边长|AB|=
,|BC|=4,|AC|=1,动点M满足
=λ
+μ
,且λμ=
.
![]()
(1)求|
|最小值,并指出此时
与
,
的夹角;
(2)是否存在两定点F1,F2使||
|-|
||恒为常数k?若存在,指出常数k的值,若不存在,说明理由.
科目:高中数学 来源: 题型:
过双曲线C:
-
=1(a>0,b>0)的一个焦点作圆x2+y2=a2的两条切线,切点分别为A、B.若∠AOB=120°(O是坐标原点),则双曲线C的离心率为 .
![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
已知双曲线
-
=1(a>0,b>0),过其右焦点F且垂直于实轴的直线与双曲线交于M,N两点,O为坐标原点.若OM⊥ON,则双曲线的离心率为( )
(A)
(B)![]()
(C)
(D)![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
已知F1,F2为双曲线Ax2-By2=1的焦点,其顶点是线段F1F2的三等分点,则其渐近线的方程为( )
(A)y=±2
x (B)y=±
x
(C)y=±x (D)y=±2
x或y=±
x
查看答案和解析>>
科目:高中数学 来源: 题型:
椭圆E:
+
=1(a>b>0)的左、右焦点分别为F1,F2,焦距为2,过F1作垂直于椭圆长轴的弦PQ,|PQ|为3.
(1)求椭圆E的方程;
(2)若过F1的直线l交椭圆于A,B两点,判断是否存在直线l使得∠AF2B为钝角,若存在,求出l的斜率k的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
过双曲线
-
=1(a>0,b>0)的左焦点F引圆x2+y2=a2的切线,切点为T,延长FT交双曲线右支于点P,若T为线段FP的中点,则该双曲线的渐近线方程为( )
(A)x±y=0 (B)2x±y=0
(C)4x±y=0 (D)x±2y=0
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com