精英家教网 > 高中数学 > 题目详情

过双曲线C: -=1(a>0,b>0)的一个焦点作圆x2+y2=a2的两条切线,切点分别为A、B.若∠AOB=120°(O是坐标原点),则双曲线C的离心率为    . 


2

与渐近线有关问题的解法 


练习册系列答案
相关习题

科目:高中数学 来源: 题型:


如图所示,D,E分别为△ABC的边AB,AC上的点,且不与△ABC的顶点重合.已知AE的长为m,AC的长为n,AD,AB的长是关于x的方程x2-14x+mn=0的两个根.

(1)证明:C,B, D,E四点共圆;

(2)若∠A=90°,且m=4,n=6,求C,B,D,E所在圆的半径.

查看答案和解析>>

科目:高中数学 来源: 题型:


定义运算a※b为a※b=如1※2=1,则函数f(x)=sin x※cos x的值域为    . 

查看答案和解析>>

科目:高中数学 来源: 题型:


已知双曲线C: -=1的焦距为10,点P(2,1)在C的渐近线上,则C的方程

为(  )

(A) -=1  (B) -=1

(C) -=1  (D) -=1

查看答案和解析>>

科目:高中数学 来源: 题型:


下列曲线中离心率为的是(  )

(A) -=1  (B) -=1

(C) -=1  (D) -=1

查看答案和解析>>

科目:高中数学 来源: 题型:


双曲线-=1的渐近线与圆(x-3)2+y2=r2(r>0)相切,则r=(  )

(A)  (B)2       (C)3   (D)6

查看答案和解析>>

科目:高中数学 来源: 题型:


 直线与双曲线位置关系的判定及应用 

 已知双曲线C的方程为-=1(a>0,b>0),离心率e=,顶点到渐近线的距离为.

 (1)求双曲线C的方程;

(2)如图,P是双曲线C上一点,A、B两点在双曲线C的两条渐近线上,且分别位于第一、二象限.

,λ∈.求△AOB的面积的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:


已知△ABC的三边长|AB|=,|BC|=4,|AC|=1,动点M满足,且λμ=.

(1)求||最小值,并指出此时,的夹角;

(2)是否存在两定点F1,F2使|||-|||恒为常数k?若存在,指出常数k的值,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:


已知椭圆C1: +=1(a>b>0)与双曲线C2:x2-=1有公共的焦点,C2的一条渐近线与以C1的长轴为直径的圆相交于A,B两点.若C1恰好将线段AB三等分,则(  )

(A)a2=   (B)a2=13

(C)b2=    (D)b2=2

查看答案和解析>>

同步练习册答案