【题目】设
(
、
为实常数).
(1)当
时,证明:
不是奇函数;
(2)设
是奇函数,求
与
的值;
(3)当
是奇函数时,研究是否存在这样的实数集的子集
,对任何属于
的
、
,都有
成立?若存在试找出所有这样的
;若不存在,请说明理由.
【答案】(1)证明见解析;(2)
或
;(3)存在,
.
【解析】
(1)举出反例即可,只要检验
,可说明
不是奇函数;
(2)由题意可得
,即
对定义域内任意实数
成立.整理可求
、
;
(3)当
时,
,由指数函数的性质可求
,由二次函数的性质可求
,可求当
时,
,当
时,
;当
时,
,结合二次函数的性质可求
的范围,即可求解.
(1)举出反例即可:
,
,
,
所以
,函数
不是奇函数;
(2)
是奇函数时,
,
即
对定义域内任意实数
成立.
化简整理得
,这是关于
的恒等式,
所以
所以
或
,经检验都符合题意;
(2)当
时,
,
因为
,所以
,
,从而
;
而
对任何实数
成立;
所以可取
对任何
、
属于
,都有
成立.
当
时,
,
所以当
时,
;当
时,
;
①因此取
,对任何
、
属于
,都有
成立;
②当
时,
,解不等式
得:
.
所以取
,对任何属于
的
、
,都有
成立.
科目:高中数学 来源: 题型:
【题目】设函数
.
(1)若不等式
对
恒成立,求
的值;
(2)若
在
内有两个极值点,求负数
的取值范围;
(3)已知
,
,若对任意实数
,总存在正实数
,使得
成立,求正实数
的取值集合.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,楔形几何体
由一个三棱柱截去部分后所得,底面
侧面
,
,楔面
是边长为2的正三角形,点
在侧面
的射影是矩形
的中心
,点
在
上,且![]()
![]()
(1)证明:
平面
;
(2)求楔面
与侧面
所成二面角的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某生产旅游纪念品的工厂,拟在2017年度进行系列促销活动.经市场调查和测算,该纪念品的年销售量x(单位:万件)与年促销费用t(单位:万元)之间满足3-x与t+1成反比例.若不搞促销活动,纪念品的年销售量只有1万件.已知工厂2017年生产纪念品的固定投资为3万元,每生产1万件纪念品另外需要投资32万元.当工厂把每件纪念品的售价定为“年平均每件生产成本的1.5倍”与“年平均每件所占促销费的一半”之和时,则当年的产量和销量相等.(利润=收入-生产成本-促销费用)
(1)请把该工厂2017年的年利润y(单位:万元)表示成促销费t(单位:万元)的函数;
(2)试问:当2017年的促销费投入多少万元时,该工厂的年利润最大?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数
,无穷数列
的首项
.
(1)如果
,写出数列
的通项公式;
(2)如果
(
且
),要使得数列
是等差数列,求首项
的取值范围;
(3)如果
(
且
),求出数列
的前
项和
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为了鼓励职员工作热情,某公司对每位职员一年来的工作业绩按月进行考评打分;年终按照职员的月平均值评选公司最佳职员并给予相应奖励.已知职员
一年来的工作业绩分数的茎叶图如图所示:
![]()
(1)根据职员
的业绩茎叶图求出他这一年的工作业绩的中位数和平均数;
(2)若记职员
的工作业绩的月平均数为
.
①已知该公司还有6位职员的业绩在100以上,分别是
,
,
,
,
,
,在这6人的业绩里随机抽取2个数据,求恰有1个数据满足
(其中
)的概率;
②由于职员
的业绩高,被公司评为年度最佳职员,在公司年会上通过抽奖形式领取奖金.公司准备了9张卡片,其中有1张卡片上标注奖金为6千元,4张卡片的奖金为4千元,另外4张的奖金为2千元.规则是:获奖职员需要从9张卡片中随机抽出3张,这3张卡片上的金额数之和就是该职员所得奖金.记职员
获得的奖金为
(千元),求
的分布列和期望.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com