精英家教网 > 高中数学 > 题目详情
7.设E,F分别是边长为1的正方形ABCD的边BC,CD上的点,∠EAF=45°,则$\overrightarrow{AE}$•$\overrightarrow{AF}$的最小值等于(  )
A.$\sqrt{2}$B.1C.2($\sqrt{2}$-1)D.$\sqrt{2}$-1

分析 以A为坐标原点,AB,AD所在的直线为x,y轴建立直角坐标系,设E(1,m),F(n,1),求得tan∠EAB=m,tan∠FAD=n,由两角和的正切公式可得tan(∠EAB+∠FAD)=1,即有m+n+mn=1,运用基本不等式可得mn≤($\frac{n+m}{2}$)2,解m+n的不等式即可得到所求最小值.

解答 解:以A为坐标原点,AB,AD所在的直线为x,y轴建立直角坐标系,
设E(1,m),F(n,1),
tan∠EAB=m,tan∠FAD=n,
且tan(∠EAB+∠FAD)=tan(90°-∠EAF)=tan45°=1,
即有$\frac{tan∠EAB+tan∠FAD}{1-tan∠EAB•tan∠FAD}$=$\frac{m+n}{1-mn}$=1,
即为m+n+mn=1,
则$\overrightarrow{AE}$•$\overrightarrow{AF}$=(1,m)•(n,1)=m+n,
由mn≤($\frac{n+m}{2}$)2,可得1=m+n+mn≤(m+n)+$\frac{(m+n)^{2}}{4}$,
解不等式可得m+n≥2($\sqrt{2}$-1),
当且仅当m=n时,$\overrightarrow{AE}$•$\overrightarrow{AF}$的最小值为2($\sqrt{2}$-1),
故选:C.

点评 本题考查向量的数量积的坐标表示和最值的求法,注意运用基本不等式和两角和的正切公式,考查化简整理的运算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

17.执行如图程序框图,输入n=4,A=4,x=2,输出结果A等于49.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.在直角坐标系xOy中,设倾斜角为α的直线l:$\left\{\begin{array}{l}{x=2+tcosα}\\{y=\sqrt{3}+tsinα}\end{array}\right.$(t为参数)与曲线C:$\left\{\begin{array}{l}{x=2cosφ}\\{y=sinφ}\end{array}\right.$(φ为参数)相交于不同的两点A,B.
(1)若α=$\frac{π}{3}$,求直线AB的极坐标方程;
(2)若直线的斜率为$\frac{\sqrt{5}}{4}$,点P(2,$\sqrt{3}$),求|PA|•|PB|的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.在平面直角坐标系xOy中,双曲线$\frac{x^2}{a^2}-{y^2}$=1与抛物线y2=-12x有相同的焦点,则双曲线的两条渐近线的方程为$y=±\frac{{\sqrt{2}}}{4}x$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.在△ABC中,设内角A、B、C的对边分别为a、b、c,向量$\overrightarrow{m}$=(cosA+$\sqrt{2}$,sinA),向量$\overrightarrow{n}$=(-sinA,cosA),若|$\overrightarrow{m}$+$\overrightarrow{n}$|=2.
(1)求角A的大小;
(2)若b=4$\sqrt{2}$,且c=$\sqrt{2}$a,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.设x,y满足约束条件$\left\{\begin{array}{l}{2x+y-6≤0}\\{x-y-1≤0}\\{x-1≥0}\end{array}\right.$,若z=ax+y仅在点($\frac{7}{3}$,$\frac{4}{3}$)处取得最大值,则a的值可以为(  )
A.4B.2C.-2D.-1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.各项均不为零的等差数列{an}中,若an+1=an2-an-1(n∈N*,n≥2),则S2016=(  )
A.0B.2C.2015D.4032

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.在集合P={m|关于x的方程x2+mx-$\frac{1}{2}$m+$\frac{15}{4}$=0至多有一个实根(相等的根只能算一个)}中,任取一个元素m,求使得式子lgm有意义的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.用反正弦函数值的形式表示各式中的x:
(1)sinx=$\frac{\sqrt{3}}{5}$,x∈[-$\frac{π}{2}$,$\frac{π}{2}$];
(2)sinx=-$\frac{1}{4}$,x∈[-$\frac{π}{2}$,$\frac{π}{2}$];
(3)sinx=$\frac{1}{7}$,x∈[-$\frac{π}{2}$,π];
(4)sinx=$\frac{\sqrt{3}}{3}$,x∈[0,π];
(5)sinx=-$\frac{2}{5}$,x∈(π,$\frac{3}{2}$π);
 (6)sinx=-$\frac{2}{5}$,x∈(π,2π)

查看答案和解析>>

同步练习册答案