精英家教网 > 高中数学 > 题目详情
17.用反正弦函数值的形式表示各式中的x:
(1)sinx=$\frac{\sqrt{3}}{5}$,x∈[-$\frac{π}{2}$,$\frac{π}{2}$];
(2)sinx=-$\frac{1}{4}$,x∈[-$\frac{π}{2}$,$\frac{π}{2}$];
(3)sinx=$\frac{1}{7}$,x∈[-$\frac{π}{2}$,π];
(4)sinx=$\frac{\sqrt{3}}{3}$,x∈[0,π];
(5)sinx=-$\frac{2}{5}$,x∈(π,$\frac{3}{2}$π);
 (6)sinx=-$\frac{2}{5}$,x∈(π,2π)

分析 利用反正弦函数的定义,即可求解.

解答 解:(1)∵sinx=$\frac{\sqrt{3}}{5}$,x∈[-$\frac{π}{2}$,$\frac{π}{2}$],∴x=arcsin$\frac{\sqrt{3}}{5}$;
(2)sinx=-$\frac{1}{4}$,x∈[-$\frac{π}{2}$,$\frac{π}{2}$],∴x=-arcsin$\frac{1}{4}$;
(3)sinx=$\frac{1}{7}$,x∈[0,$\frac{π}{2}$],∴x=arcsin$\frac{1}{7}$,x∈[$\frac{π}{2}$,π],∴x-π∈[-$\frac{π}{2}$,0],∵sin(x-π)=-$\frac{1}{7}$,∴x-π=-arcsin$\frac{1}{7}$,∴x=π-arcsin$\frac{1}{7}$;
(4)sinx=$\frac{\sqrt{3}}{3}$,x∈[0,π],∴x=arcsin$\frac{\sqrt{3}}{3}$或x=π-arcsin$\frac{\sqrt{3}}{3}$;
(5)sinx=-$\frac{2}{5}$,x∈(π,$\frac{3}{2}$π),∴x-π∈(0,$\frac{π}{2}$),∵sin(x-π)=$\frac{2}{5}$,∴x-π=arcsin$\frac{2}{5}$,∴x=π+arcsin$\frac{2}{5}$;
 (6)sinx=-$\frac{2}{5}$,x∈(π,$\frac{3}{2}$π),∴x-π∈(0,$\frac{π}{2}$),∵sin(x-π)=$\frac{2}{5}$,∴x-π=arcsin$\frac{2}{5}$,∴x=π+arcsin$\frac{2}{5}$;
x∈($\frac{3}{2}$π,2π),∴x-2π∈(-$\frac{π}{2}$,0),∵sin(x-2π)=-$\frac{2}{5}$,∴x-2π=-arcsin$\frac{2}{5}$,∴x=2π-arcsin$\frac{2}{5}$.

点评 本题考查反正弦函数的定义,考查学生的计算能力,注意反正弦函数的定义域是关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

7.设E,F分别是边长为1的正方形ABCD的边BC,CD上的点,∠EAF=45°,则$\overrightarrow{AE}$•$\overrightarrow{AF}$的最小值等于(  )
A.$\sqrt{2}$B.1C.2($\sqrt{2}$-1)D.$\sqrt{2}$-1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.函数f(x)=${2^{2x-{x^2}}}$的值域为(0,2].

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.各棱长都等于4的四面ABCD中,设G为BC的中点,E为△ACD内的动点(含边界),且GE∥平面ABD,若$\overrightarrow{AE}$•$\overrightarrow{BD}$=1,则|$\overrightarrow{AE}$|=$\frac{\sqrt{21}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知函数f(x)=$\sqrt{2}$cos(x-$\frac{π}{4}$),若f(θ)=$\frac{2}{3}$,θ∈(0,π),求cos2θ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.锐角三角形ABC的三内角A,B,C的对边长分别是a,b,c,且a,b,c满足a2-b2+c2-ac=0
(1)求内角B的大小;
(2)若b=1,求三角形ABC周长的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知Sn为数列{an}的前n项和,对任意的n∈N*都有an>0,a1=1且满足$\sqrt{{S}_{n}}$=$\frac{1}{2}$(an+1),求数列{an}的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.一个正三棱柱的侧棱长和底面边长相等,体积为$16\sqrt{3}c{m^3}$,它的三视图中的俯视图如图所示,侧视图是一个矩形,则侧视图的面积是(  )
A.8B.$8\sqrt{3}$C.4D.$4\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.若扇形的周长为16cm,圆心角为2rad,则该扇形的面积为16cm2

查看答案和解析>>

同步练习册答案