精英家教网 > 高中数学 > 题目详情
6.一个正三棱柱的侧棱长和底面边长相等,体积为$16\sqrt{3}c{m^3}$,它的三视图中的俯视图如图所示,侧视图是一个矩形,则侧视图的面积是(  )
A.8B.$8\sqrt{3}$C.4D.$4\sqrt{3}$

分析 设出对面边长,表示出几何体的体积,求出边长,然后求解侧视图的面积.

解答 解:设底面边长为x,则$V=\frac{{\sqrt{3}}}{4}{x^3}=16\sqrt{3}$,∴x=4.
∴侧视图是长为4,宽为$2\sqrt{3}$的矩形,
${S_侧}=4×2\sqrt{3}=8\sqrt{3}$,
故选:B.

点评 本题考查三视图的应用,几何体的就与吧,就的求法,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

16.在集合P={m|关于x的方程x2+mx-$\frac{1}{2}$m+$\frac{15}{4}$=0至多有一个实根(相等的根只能算一个)}中,任取一个元素m,求使得式子lgm有意义的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.用反正弦函数值的形式表示各式中的x:
(1)sinx=$\frac{\sqrt{3}}{5}$,x∈[-$\frac{π}{2}$,$\frac{π}{2}$];
(2)sinx=-$\frac{1}{4}$,x∈[-$\frac{π}{2}$,$\frac{π}{2}$];
(3)sinx=$\frac{1}{7}$,x∈[-$\frac{π}{2}$,π];
(4)sinx=$\frac{\sqrt{3}}{3}$,x∈[0,π];
(5)sinx=-$\frac{2}{5}$,x∈(π,$\frac{3}{2}$π);
 (6)sinx=-$\frac{2}{5}$,x∈(π,2π)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知A={x|x2+x-2>0},B={x|x2+x-6≤0},则A∩B=(  )
A.(-3,-2]∪(1,+∞)B.(-3,-2]∪(1,2)C.[-3,-2)∪(1,2]D.(-∞,-3]∪(1,2]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.下列函数中,既是偶函数又在(0,+∞)上单调递增的是(  )
A.y=exB.y=lnx2C.y=$\sqrt{x}$D.y=sinx

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.P是棱长为2的正四面体内任意一点,则它到该正四面体各个面的距离之和等于$\frac{2\sqrt{6}}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知S1=$\int_1^2$xdx,S2=$\int_1^2$exdx,S3=$\int_1^2$x2dx,则S1,S2,S3的大小关系为(  )
A.S1<S2<S3B.S1<S3<S2C.S3<S2<S1D.S2<S3<S1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知角θ的顶点在坐标原点,始边为x轴的正半轴,若A(x,-1)是角θ终边上的一点,且cosθ=$\frac{2\sqrt{5}}{5}$,则x的值为(  )
A.-2B.2C.-3D.3

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.若复数z=a-$\sqrt{2}$+3i为纯虚数,其中a∈R,i为虚数单位,则$\frac{a+{i}^{2007}}{1+ai}$的值为-i.

查看答案和解析>>

同步练习册答案