精英家教网 > 高中数学 > 题目详情
11.P是棱长为2的正四面体内任意一点,则它到该正四面体各个面的距离之和等于$\frac{2\sqrt{6}}{3}$.

分析 先求出正四面体的体积,利用正四面体的体积相等,求出它到四个面的距离.

解答 解:因为正四面体的体积等于四个三棱锥的体积和,
设它到四个面的距离分别为a,b,c,d,
由于棱长为1的正四面体,故四个面的面积都是 $\frac{1}{2}$×2×2×sin60°=$\sqrt{3}$.
又顶点到底面的投影在底面的中心,此点到底面三个顶点的距离都是高的
,又高为2×sin60°=$\sqrt{3}$,
故底面中心到底面顶点的距离都是:$\frac{2\sqrt{3}}{3}$.
由此知顶点到底面的距离是 $\sqrt{{2}^{2}-({\frac{2\sqrt{3}}{3})}^{2}}$=$\frac{2\sqrt{6}}{3}$.
此正四面体的体积是 $\frac{1}{3}$×$\sqrt{3}$×$\frac{2\sqrt{6}}{3}$=$\frac{1}{3}$×$\sqrt{3}$×(a+b+c+d).
所以:a+b+c+d=$\frac{2\sqrt{6}}{3}$.
故答案为:$\frac{2\sqrt{6}}{3}$.

点评 本题是中档题,考查正四面体的体积的计算,转化思想的应用,考查空间想象能力,计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

1.在复平面内,复数z=$\frac{2}{1-i}$-2i3(i为虚数单位)表示的点位于(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.锐角三角形ABC的三内角A,B,C的对边长分别是a,b,c,且a,b,c满足a2-b2+c2-ac=0
(1)求内角B的大小;
(2)若b=1,求三角形ABC周长的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.等差数列{an}的首项为a1,公差为d,前n项和为Sn,求证:数列{$\frac{{S}_{n}}{n}$}是等差数列.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.一个正三棱柱的侧棱长和底面边长相等,体积为$16\sqrt{3}c{m^3}$,它的三视图中的俯视图如图所示,侧视图是一个矩形,则侧视图的面积是(  )
A.8B.$8\sqrt{3}$C.4D.$4\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.下面几种推理过程是演绎推理的是(  )
A.某校高三有8个班,1班有51人,2班有53人,由此推断各班人数都超过50人
B.由三角形的性质,推测空间四面体的性质
C.在数列{an}中,a1=1,an+1=$\frac{{a}_{n}}{1+{a}_{n}}$(n=1,2,3),由此归纳出{an}的通项公式
D.三角函数都是周期函数,tanα是三角函数,因此tanα是周期函数

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知函数f(x)在其定义区间[a,b]上满足①f(x)>0;②f′(x)<0;③对任意的x1,x2∈[a,b],式子$f({\frac{{{x_1}+{x_2}}}{2}})$≤$\frac{{f({x_1})+f({x_2})}}{2}$恒成立.记S1=$\int_{\;\;a}^{\;\;b}$f(x)dx,S2=$\frac{f(a)+f(b)}{2}$•(b-a),S3=f(b)(b-a),则S1,S2,S3的大小关系为s3<s1≤s2.(按由小到大的顺序)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.计算不定积分${∫}_{\;}^{\;}$$\frac{{x}^{3}+3{x}^{2}sinx+2x-1}{{x}^{2}}$dx.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.在△ABC中,D为BC的中点,tan∠BAD=$\frac{1}{tan∠C}$,E为边AC上的一点,且AE=$\frac{1}{2}$EC,BE=2,则△ABC面积的最大值为3.

查看答案和解析>>

同步练习册答案