精英家教网 > 高中数学 > 题目详情
10.某设备的使用年限x(单位:年)与所支付的维修费用y(单位:千元)的一组数据如表:
使用年限x2345
维修费用y23.456.6
从散点图分析.Y与x线性相关,根据上表中数据可得其线性回归方程:$\widehat{y}$=$\widehat{b}$x+$\widehat{a}$中的$\widehat{b}$=1.54.由此预测该设备的使用年限为6年时需支付的维修费用约是(  )
A.7.2千元B.7.8千元C.8.1千元D.9.5千元

分析 根据所给的数据求出这组数据的横标和纵标的平均数,即这组数据的样本中心点,根据样本中心点在线性回归直线上,把样本中心点代入求出a的值,写出线性回归方程,代入x的值,预报出结果.

解答 解:∵由表格可知$\overline{x}=\frac{2+3+4+5}{4}$=3.5,$\overline{y}$=$\frac{2+3.4+5+6.6}{4}$=4.25,
∴这组数据的样本中心点是(3.5,4.25),
根据样本中心点在线性回归直线上,
∴4.25=$\hat{a}$+1.54×3.5,
∴$\hat{a}$=-1.14,
∴这组数据对应的线性回归方程是y=1.54x-1.14,
∵x=6,
∴y=1.54×6-1.14=8.1,
故选:C.

点评 本题考查线性回归方程,考查样本中心点,做本题时要注意本题把利用最小二乘法来求线性回归方程的系数的过程省掉,只要求a的值,这样使得题目简化,注意运算不要出错.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

20.已知向量$\overrightarrow{a}$=(-1,2x),$\overrightarrow{b}$=(2,2y),且$\overrightarrow{a}$⊥$\overrightarrow{b}$,则|$\overrightarrow{a}$+$\overrightarrow{b}$|的最小值为3.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知函数f(x)=sinx•(2cosx-sinx)+cos2x.
(1)讨论函数f(x)在[0,π]上的单调性;
(2)设$\frac{π}{4}<α<\frac{π}{2}$,且$f(α)=-\frac{{5\sqrt{2}}}{13}$,求sin2α的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.设正项等比数列{an}满足a4a6=$\frac{1}{4}$,a7=$\frac{1}{8}$,则a1的值为(  )
A.15B.14C.12D.8

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.如图,在正方体ABCD一A1B1C1D1中,AB=3,CE=2EC1
(Ⅰ)若F是AB的中点,求证:C1F∥平面BDE;
(Ⅱ)求三棱锥D-BEB1的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.如图,在正方体ABCD一A1B1C1D1中,AB=3,CE=2EC1
(Ⅰ)若F是AB的中点,求证;C1F∥平面BDE;
(Ⅱ)求二面角D一BE一C的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.F为双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}$=1的右焦点,点P在双曲线右支上,△POF(O为坐标原点)是面积为$\sqrt{3}$的等边三角形,则双曲线的离心率为(  )
A.$\sqrt{3}$B.2C.$\sqrt{5}$D.$\sqrt{3}$+1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.如图是一个几何体的三视图,则该几何体任意两个顶点间距离的最大值是(  )
A.3$\sqrt{2}$B.3$\sqrt{3}$C.4D.5

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知函数f(x)=x2-4|x|+3.
(1)试证明函数f(x)是偶函数;
(2)画出f(x)的图象;(要求先用铅笔画出草图,再用中性笔描摹)
(3)请根据图象指出函数f(x)的单调递增区间与单调递减区间;(不必证明)
(4)当实数k取不同的值时,讨论关于x的方程x2-4|x|+3=k的实根的个数.

查看答案和解析>>

同步练习册答案