精英家教网 > 高中数学 > 题目详情
9.如图所示,一个小球做简谐运动,当时间t=0s时,小球在平衡位置,当t=1s时,小球第一次达到偏离平衡位置最大距离,这时小球离开平衡位置2cm,若该简谐运动的解析式为y=Asin(ωt+φ),则A,ω,φ的值分别是多少?

分析 根据简谐运动y=Asin(ωt+φ)的物理意义,可分别求出A,ω,φ的值.

解答 解:t=0s,小球在平衡位置,φ=0,
由$\frac{T}{4}$=1s,T=4s,$ω=\frac{2π}{T}$=$\frac{π}{2}$,
∴A=2cm,
∴y=2sin$\frac{π}{2}$t.

点评 本题考查y=Asin(ωt+φ)函数图象的物理意义,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

19.已知双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的左、右焦点分别为F1、F2,点P在双曲线的右支上,且|PF1|=4|PF2|,则此双曲线的离心率e的最大值为(  )
A.$\frac{5}{4}$B.$\frac{6}{5}$C.$\frac{5}{3}$D.$\frac{8}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.如图,多面体ABCDEF中,四边形ABCD为菱形,且∠DAB=60°,EF∥AC,AD=2,EA=ED=EF=$\sqrt{3}$.
(Ⅰ)求证:AD⊥BE;
(Ⅱ)若BE=$\sqrt{5}$,求三棱锥F-BCD的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.双曲线E:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a,b>0)的右焦点为F(c,0),若圆C:(x-c)2+y2=4a2与双曲线E的渐近线相切,则E的离心率为(  )
A.$\frac{\sqrt{5}}{2}$B.$\frac{\sqrt{3}+1}{2}$C.$\sqrt{5}$D.$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.双曲线$\frac{x^2}{4}-\frac{y^2}{5}=1$的焦距等于(  )
A.2B.4C.3D.6

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.过点E(1,0)作两条互相垂直的直线交抛物线y2=4x于点A、B、C、D,且M、N分别是AB、CD的中点,则三角形EMN面积的最小值为(  )
A.2B.3C.$\frac{1}{3}$D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.过抛物线的顶点任作互相垂直的两条弦,交抛物线于两点,求证:这两点所连线段中点的轨迹是抛物线.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.从5名女同学和4名男同学中选出4人参加四场不同的演讲,分别按下列要求,各有多少种不同选法?
(1)男、女同学各2名;
(2)男、女同学分别至少有1名;
(3)男、女同学分别至少有1名且男同学甲与女同学乙不能同时选出.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.一个高为H容积为V的鱼缸的轴截面如图所示.现向空鱼缸内注水,直到注满为止.当鱼缸水深为h时,水的体积记为v.函数v=f(h)的大致图象可能是(  )
A.B.C.D.

查看答案和解析>>

同步练习册答案