分析 作出不等式对应的平面区域,利用目标函数的几何意义,求目标函数的最大值即可.
解答
解:由约束条件得到平面区域如图:
由z=2x-3y+2016得到y=$\frac{2}{3}x-\frac{z}{3}+672$,
平移直线y=$\frac{2}{3}x-\frac{z}{3}+672$当过B时直线截距最小,z最大,
由$\left\{\begin{array}{l}{x+2y-6=0}\\{x-2y=0}\end{array}\right.$得到B(3,1.5),
所以z=2x-3y+2016的最大值为
2×3-3×1.5+2016=2017.5;
故答案为:2017.5.
点评 本题主要考查线性规划的应用,利用目标函数的几何意义,结合数形结合的数学思想是解决此类问题的基本方法.
科目:高中数学 来源: 题型:选择题
| A. | 1 | B. | 2 | C. | 3 | D. | 2$\sqrt{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $(1,1+\frac{{\sqrt{2}}}{2})$ | B. | $(1-\frac{{\sqrt{2}}}{2},1)$ | C. | $(1-\frac{{\sqrt{3}}}{2},1+\frac{{\sqrt{2}}}{2})$ | D. | $(1-\frac{{\sqrt{2}}}{2},1+\frac{{\sqrt{2}}}{2})$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 若a∥α,b∥β,α∥β,则a∥b | |
| B. | 若a∥α,b∥β,a∥b,则α∥β | |
| C. | 若a,b是异面直线,a∥α,b∥β,a?β,b?α,则α∥β | |
| D. | 若a,b是异面直线,a∥α,b∥β,a?β,b?α,则α∥β |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | z的实部为$-\frac{1}{5}$ | B. | z的虚部为$-\frac{1}{5}i$ | ||
| C. | $|z|=\frac{3}{5}$ | D. | z的共轭复数为$\frac{3}{5}+\frac{1}{5}i$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com