设i、j分别是平面直角坐标系Ox,Oy正方向上的单位向量,且
=-2i+mj,
=ni+j,
=5i-j,若点A、B、C在同一条直线上,且m=2n,求实数m、n的值.
科目:高中数学 来源:2015高考数学(理)一轮配套特训:5-2等差数列及其前n项和(解析版) 题型:选择题
在各项均不为零的等差数列{an}中,若
-an+1=an-1(n≥2,n∈N*),则S2014的值为( )
A.2013 B.2014 C.4026 D.4028
查看答案和解析>>
科目:高中数学 来源:2015高考数学(理)一轮配套特训:4-3平面向量的数量积及应用(解析版) 题型:解答题
设向量a,b满足|a|=|b|=1及|3a-2b|=
.
(1)求a,b夹角的大小;
(2)求|3a+b|的值.
查看答案和解析>>
科目:高中数学 来源:2015高考数学(理)一轮配套特训:4-2平面向量的基本定理及坐标表示(解析版) 题型:填空题
已知平面直角坐标系xOy上的区域D由不等式组
给定,若M(x,y)为D上的动点,A的坐标为(-1,1),则
·
的取值范围是________.
查看答案和解析>>
科目:高中数学 来源:2015高考数学(理)一轮配套特训:4-2平面向量的基本定理及坐标表示(解析版) 题型:选择题
已知向量a=(1-t,t),b=(2,3),则|a-b|的最小值为( )
A.
B.2
C.2
D.4![]()
查看答案和解析>>
科目:高中数学 来源:2015高考数学(理)一轮配套特训:4-1向量的概念及运算(解析版) 题型:选择题
已知A,B,C是平面上不共线的三点,O是△ABC的重心,动点P满足
=
(![]()
+![]()
+2
),则点P一定为三角形ABC的( )
A.AB边中线的中点
B.AB边中线的三等分点(非重心)
C.重心
D.AB边的中点
查看答案和解析>>
科目:高中数学 来源:2015高考数学(理)一轮配套特训:3-8解三角形应用举例(解析版) 题型:填空题
甲船在岛B的正南A处,AB=10 n mile,甲船自A处以4 n mile/h的速度向正北航行,同时乙船以6 n mile/h的速度自岛B出发,向北偏东60°方向驶去,则两船相距最近时经过了________ min.
查看答案和解析>>
科目:高中数学 来源:2015高考数学(理)一轮配套特训:3-7正弦定理和余弦定理(解析版) 题型:选择题
已知△ABC的三边长为a,b,c,且面积S△ABC=
(b2+c2-a2),则A=( )
A.
B.
C.
D.![]()
查看答案和解析>>
科目:高中数学 来源:2015高考数学(理)一轮配套特训:3-5两角和与差的正弦、余弦和正切(解析版) 题型:选择题
已知
=5,则sin2α-sinαcosα的值是( )
A.
B.-
C.-2 D.2
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com