精英家教网 > 高中数学 > 题目详情

已知△ABC的三边长为a,b,c,且面积S△ABC= (b2+c2-a2),则A=(  )

A. B. C. D.

 

A

【解析】因为S△ABC=bcsinA= (b2+c2-a2),所以sinA==cosA,故A=

 

练习册系列答案
相关习题

科目:高中数学 来源:2015高考数学(理)一轮配套特训:4-4数系的扩充与复数的引入(解析版) 题型:选择题

设复数z=-isinθ,其中i为虚数单位,θ∈[-],则|z|的取值范围是(  )

A.[1,] B.[1,]

C.[] D.[]

 

查看答案和解析>>

科目:高中数学 来源:2015高考数学(理)一轮配套特训:4-1向量的概念及运算(解析版) 题型:解答题

设i、j分别是平面直角坐标系Ox,Oy正方向上的单位向量,且=-2i+mj,=ni+j,=5i-j,若点A、B、C在同一条直线上,且m=2n,求实数m、n的值.

 

查看答案和解析>>

科目:高中数学 来源:2015高考数学(理)一轮配套特训:3-8解三角形应用举例(解析版) 题型:解答题

如图所示,在四边形ABCD中,AB=AD=1,∠BAD=θ,而△BCD是正三角形.

(1)将四边形ABCD的面积S表示为θ的函数;

(2)求S的最大值及此时θ角的值.

 

查看答案和解析>>

科目:高中数学 来源:2015高考数学(理)一轮配套特训:3-8解三角形应用举例(解析版) 题型:选择题

在200 m高的山顶上,测得山下一塔顶与塔底俯角分别为30°、60°,则塔高为(  )

A. m B. m C. m D. m

 

查看答案和解析>>

科目:高中数学 来源:2015高考数学(理)一轮配套特训:3-7正弦定理和余弦定理(解析版) 题型:填空题

在△ABC中,内角A、B、C所对的边分别是a、b、c,若sinC+sin(B-A)=sin2A,则△ABC的形状为________.

 

查看答案和解析>>

科目:高中数学 来源:2015高考数学(理)一轮配套特训:3-7正弦定理和余弦定理(解析版) 题型:选择题

在△ABC中,已知sinA∶sinB∶sinC=4∶5∶8,则△ABC一定为(  )

A.正三角形 B.等腰三角形

C.直角三角形 D.钝角三角形

 

查看答案和解析>>

科目:高中数学 来源:2015高考数学(理)一轮配套特训:3-5两角和与差的正弦、余弦和正切(解析版) 题型:填空题

已知函数f(x)=2sin2(+x)-cos2x-1,x∈[],则f(x)的最小值为________.

 

查看答案和解析>>

科目:高中数学 来源:2015高考数学(理)一轮配套特训:3-3三角函数的图象与性质(解析版) 题型:选择题

函数f(x)=2cos(ωx+φ)(ω>0,0<φ<π)为奇函数,该函数的部分图象如图所示,点A,B分别为该部分图象的最高点与最低点,且这两点间的距离为4,则函数f(x)图象的一条对称轴的方程为(  )

A.x= B.x= C.x=4 D.x=2

 

查看答案和解析>>

同步练习册答案