| A. | 向右平移$\frac{π}{12}$个单位长度 | B. | 向左平移$\frac{π}{12}$个单位长度 | ||
| C. | 向右平移$\frac{π}{6}$个单位长度 | D. | 向左平移$\frac{π}{6}$个单位长度 |
分析 首先根据函数的图象确定A、ω、φ的值,进一步确定解析式,然后利用函数图象的平移变换求得结果.
解答 解:根据函数的图象:A=1
T=4($\frac{7π}{12}$-$\frac{π}{3}$)=π
所以:ω=2
当x=$\frac{π}{3}$时,f($\frac{π}{3}$)=sin(2×$\frac{π}{3}$+φ)=0,
由于|φ|<$\frac{π}{2}$,
解得:φ=$\frac{π}{3}$,
∴f(x)=sin(2x+$\frac{π}{3}$)=sin[2(x+$\frac{π}{6}$)],
∴要得到g(x)=sin2x的图象,则需将f(x)的图象向右平移$\frac{π}{6}$个单位即可.
故选:C.
点评 本题考查的知识要点:函数图象解析式的求法,函数图象的平移变换,属于基础题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 2 | B. | $\sqrt{2}$ | C. | 2$\sqrt{2}$ | D. | 4 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 0 | B. | 1 | C. | 2015 | D. | 2016 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 正方体、球、侧棱两两垂直且相等的正三棱锥 | |
| B. | 正方体、球、各棱长都相等的正三棱柱 | |
| C. | 球、高和底面半径相等的圆柱、高和底面半径相等的圆锥 | |
| D. | 正方体、正四棱台、棱长相等的平行六面体 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com