精英家教网 > 高中数学 > 题目详情
16.椭圆$\frac{{x}^{2}}{6}$+$\frac{{y}^{2}}{2}$=1的焦距为(  )
A.2B.3C.2$\sqrt{2}$D.4

分析 根据椭圆的定义直接计算即可.

解答 解:由椭圆的方程可知:焦距2c=2$\sqrt{6-2}$=4,
故选:D.

点评 本题考查椭圆的简单性质,注意解题方法的积累,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

19.若x>0,求x+$\frac{1}{x}$+$\frac{16x}{x^2+1}$的最小值,并求取得最小值时的x值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知椭圆C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$的离心率为$\frac{{\sqrt{3}}}{2}$,且经过点(0,1).圆C1:x2+y2=a2+b2
(1)求椭圆C的方程;
(2)若直线l:y=kx+m(k≠0)与椭圆C有且只有一个公共点M,且l与圆C1相交于A,B两点,问$\overrightarrow{AM}+\overrightarrow{BM}$=0是否成立?请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.椭圆$\frac{{x}^{2}}{25}+\frac{{y}^{2}}{9}$=1上一点P到一个焦点的距离为5,则P到另一个焦点的距离为(  )
A.10B.6C.5D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.椭圆$\frac{{x}^{2}}{25}$+$\frac{{y}^{2}}{16}$=1的离心率是(  )
A.$\frac{3}{4}$B.$\frac{5}{\sqrt{41}}$C.$\frac{4}{5}$D.$\frac{3}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.设P是椭圆$\frac{x^2}{9}+\frac{y^2}{4}$=1上一动点,F1、F2是椭圆的两个焦点,则cosF1PF2的最小值是(  )
A.$\frac{1}{2}$B.$\frac{1}{9}$C.-$\frac{1}{9}$D.-$\frac{5}{9}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知椭圆$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1(a>b>0)经过点(1,$\frac{3}{2}}$),且椭圆的左、右焦点分别为F1(-1,0)、F2(1,0),过椭圆的右焦点F2作两条互相垂直的直线,分别交椭圆于点 A、B及C、D.
(1)求椭圆的方程;
(2)求$\frac{1}{{|{{A}{B}}|}}$+$\frac{1}{{|{CD}|}}$的值;
(3)求|AB|+$\frac{9}{16}$|CD|的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知a>0,命题p:f(x)=$\frac{\sqrt{2}}{2}$cos(2x+$\frac{π}{4}$)+sin2x+a,x∈R,3≤f(x)≤6恒成立:命题q:g(x)=log3(ax2+ax+1)的定义域为R,若p∨q为真命题,p∧q为假命题,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.把函数y=2sin(2x+$\frac{π}{4}$)的图象向右平移$\frac{π}{8}$个单位,再把所得图象上各点的横坐标扩大为原来的2倍,则所得的函数的解析式是(  )
A.y=2sin(x+$\frac{3π}{8}$)B.y=2sin(x+$\frac{π}{8}$)C.y=2sinxD.y=2sin4x

查看答案和解析>>

同步练习册答案