精英家教网 > 高中数学 > 题目详情
19.若x>0,求x+$\frac{1}{x}$+$\frac{16x}{x^2+1}$的最小值,并求取得最小值时的x值.

分析 x>0,可得x+$\frac{1}{x}$≥2,当且仅当x=1时取等号.令$x+\frac{1}{x}$=t∈[2,+∞),则x+$\frac{1}{x}$+$\frac{16x}{x^2+1}$=t+$\frac{16}{t}$,再利用基本不等式的性质即可得出.

解答 解:∵x>0,∴x+$\frac{1}{x}$≥$2\sqrt{x•\frac{1}{x}}$=2,当且仅当x=1时取等号.
令$x+\frac{1}{x}$=t∈[2,+∞),
则x+$\frac{1}{x}$+$\frac{16x}{x^2+1}$=$x+\frac{1}{x}$+$\frac{16}{x+\frac{1}{x}}$=t+$\frac{16}{t}$≥2$\sqrt{t•\frac{16}{t}}$=8,当且仅当t=4即x=2±$\sqrt{3}$时取等号.
∴当x=2±$\sqrt{3}$时,x+$\frac{1}{x}$+$\frac{16x}{x^2+1}$取得最小值8.

点评 本题考查了基本不等式的性质,考查了推理能力与计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

9.已知函数f(x)=$\left\{{\begin{array}{l}{{{log}_2}(x+1),x>1}\\{x-1,x≤1}\end{array}}$,若关于x的方程f[f(x)]=a有解,则实数a的取值范围是(-∞,-1]∪(1,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知等差数列{an}的前n项和记为Sn,公差为2,且a1,a2,a4依次构成等比数列.
(1)求数列{an}的通项公式与Sn
(2)数列{bn}满足bn=$\frac{1}{{S}_{n}}$,求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.如图,四边形ABCD为矩形,AD⊥平面ABE,AE=EB=BC=2,F为CE上的点.且BF⊥平面ACE.
(1)求证:平面ADE⊥平面BCE;
(2)求二面角E-AC-B的大小;
(3)设M在线段AB上,且满足AM=2MB,试在线段CE上确定一点N,使得MN∥平面DAE.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.若tan(α+β)=$\frac{2}{5}$,tan(β-$\frac{π}{4}$)=$\frac{1}{4}$,则$\frac{1}{tan(α+\frac{π}{4})}$=$\frac{3}{22}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知sin($\frac{π}{4}$+α)=$\frac{1}{3}$,α是第二象限角,则sin(2α+$\frac{5π}{6}$)=$\frac{4\sqrt{2}-7\sqrt{3}}{18}$或-$\frac{7\sqrt{3}+4\sqrt{2}}{18}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.解不等式:
(1)$\sqrt{4x-3}$>1
(2)$\sqrt{4-x}$>a
(3)$\sqrt{4x-3}$-$\sqrt{x-3}$>0
(4)3x-4>$\sqrt{x-3}$
(5)$\sqrt{5-x}$>x-3
(6)$\sqrt{5-4x{-x}^{2}}$≥x
(7)$\sqrt{3x+1}$>$\sqrt{2x-1}$-1
(8)(x-3)(x+1)(x+2)≤0
(9)x(x-$\sqrt{3}$)(x+1)(x+2)≤0.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.在平面直角坐标系xOy中,点M(x,y)的坐标满足不等式组$\left\{\begin{array}{l}{y≥1}\\{y≤2x-1}\\{x+y≤m}\end{array}\right.$,已知N(1,-1),且$\overrightarrow{ON}•\overrightarrow{OM}$的最小值为-1,则实数m=5.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.椭圆$\frac{{x}^{2}}{6}$+$\frac{{y}^{2}}{2}$=1的焦距为(  )
A.2B.3C.2$\sqrt{2}$D.4

查看答案和解析>>

同步练习册答案