精英家教网 > 高中数学 > 题目详情
14.若tan(α+β)=$\frac{2}{5}$,tan(β-$\frac{π}{4}$)=$\frac{1}{4}$,则$\frac{1}{tan(α+\frac{π}{4})}$=$\frac{3}{22}$.

分析 利用已知条件,结合两角和与差的正切函数求解即可.

解答 解:tan(α+β)=$\frac{2}{5}$,tan(β-$\frac{π}{4}$)=$\frac{1}{4}$,
$tan(α+\frac{π}{4})$=$tan[(α+β)-(β-\frac{π}{4})]$=$\frac{tan(α+β)-tan(β-\frac{π}{4})}{1+tan(α+β)tan(β-\frac{π}{4})}$=$\frac{\frac{2}{5}-\frac{1}{4}}{1+\frac{2}{5}×\frac{1}{4}}$=$\frac{3}{22}$.
故答案为:$\frac{3}{22}$.

点评 本题考查两角和与差的三角函数,基本知识的考查.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

4.下列说法中一定正确的是(  )
A.若a>b,则$\frac{1}{a}$<$\frac{1}{b}$B.若ac2>bc2,则a>bC.若a>b,则ac>bcD.若a>b,则(${\frac{1}{2}}$)a>(${\frac{1}{2}}$)b

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知tanθ=-$\frac{1}{3}$,则$\frac{7sinθ-3cosθ}{4sinθ+5cosθ}$的值为$-\frac{16}{11}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.如图,在矩形ABCD中,AB=2,AD=1,在平面内将矩形ABCD绕点B按顺时针方向旋转60°后得到矩形A′BC′D′,则点D′到直线AB的距离是$\sqrt{3}+\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知$\overrightarrow{a}$=(sinx,cosx),$\overrightarrow{b}$=(sinx,k),$\overrightarrow{c}$=(-2cosx,sinx-k),若f(x)=$\overrightarrow{a}•(\overrightarrow{b}+\overrightarrow{c})$,求方程f(x)=$\frac{1}{2}$的解集.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.若x>0,求x+$\frac{1}{x}$+$\frac{16x}{x^2+1}$的最小值,并求取得最小值时的x值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知点A(2,0),B(0,4),点P是过点M(0,-1)的直线l上任意一点,∠APB是锐角,求l的斜率的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.某班举行元旦文艺联欢,在联欢中除了有固定节目外,还有抽签确定的即兴表演,规定每六人一组,每组要抽出三人进行表演.具体抽取办法是:在暗箱中有三黄三白六个乒乓球,六人逐个上台抽取(不放回),抽到黄球者表演节目.若甲、乙在一组,求:
(1)甲、乙都抽到黄球的概率;
(2)在甲抽到黄球的前提下,乙抽到黄球的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.椭圆$\frac{{x}^{2}}{25}$+$\frac{{y}^{2}}{16}$=1的离心率是(  )
A.$\frac{3}{4}$B.$\frac{5}{\sqrt{41}}$C.$\frac{4}{5}$D.$\frac{3}{5}$

查看答案和解析>>

同步练习册答案