精英家教网 > 高中数学 > 题目详情
9.已知$\overrightarrow{a}$=(sinx,cosx),$\overrightarrow{b}$=(sinx,k),$\overrightarrow{c}$=(-2cosx,sinx-k),若f(x)=$\overrightarrow{a}•(\overrightarrow{b}+\overrightarrow{c})$,求方程f(x)=$\frac{1}{2}$的解集.

分析 由已知三个向量的坐标得到f(x)的解析式,然后化简,由f(x)=$\frac{1}{2}$求出x的集合.

解答 解:由已知f(x)=$\overrightarrow{a}•(\overrightarrow{b}+\overrightarrow{c})$=(sinx,cosx)•(sinx-2cosx,sinx)=sin2x-2sinxcosx+cosxsinx=$\frac{1}{2}$(1-cos2x)-$\frac{1}{2}$sin2x=$\frac{1}{2}-\frac{\sqrt{2}}{2}$sin(2x+$\frac{π}{4}$),
所以f(x)=$\frac{1}{2}$即$\frac{1}{2}-\frac{\sqrt{2}}{2}$sin(2x+$\frac{π}{4}$)=$\frac{1}{2}$,所以sin(2x+$\frac{π}{4}$)=0,解得2x+$\frac{π}{4}$=kπ,所以x=$\frac{kπ}{2}-\frac{π}{8}$,k∈Z;
所以方程f(x)=$\frac{1}{2}$的解集为:{x|x=$\frac{kπ}{2}-\frac{π}{8}$,k∈Z}.

点评 本题考查了平面向量的坐标运算以及三角函数式的化简,属于经常考查题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

19.P是圆x2+y2=4上任意一点,P在x轴上的射影为M点,N是PM的中点,点N的轨迹为曲线C,曲线C1的方程为:
x2=8(y-m)(m>0)
(1)求轨迹C的方程;
(2)若曲线C与曲线C1只有一个公共点,求曲线C1的方程;
(3)在(2)的条件下,求曲线C和曲线C1都只有一个交点的直线l方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.在中学生综合素质评价某个维度的测评中,分“优秀、合格、尚待改进”三个等级进行学生互评.某校高一年级有男生500人,女生400人,为了了解性别对该维度测评结果的影响,采用分层抽样方法从高一年级抽取了45名学生的测评结果,并作出频数统计表如下:
表1:男生
等级优秀合格尚待改进
频数15x5
表2:女生
等级优秀合格尚待改进
频数153y
(1)从表二的非优秀学生中随机选取2人交谈,求所选2人中恰有1人测评等级为合格的概率;
(2)从表二中统计数据填写下边2×2列联表,并判断是否有90%的把握认为“测评结果优秀与性别有关”.
男生女生总计
优秀
非优秀
总计
参考数据与公式:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d.
临界值表:
P(K2>k00.100.050.01
k02.7063.8416.635

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知Sn表示等差数列{an}的前n项和,且$\frac{a_1}{a_5}=\frac{3}{7}$,那么$\frac{S_5}{{{S_{20}}}}$(  )
A.$\frac{1}{9}$B.$\frac{1}{10}$C.$\frac{1}{8}$D.$\frac{1}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.如图,在四棱锥P-ABCD中,底面ABCD是边长为1的菱形,∠BAD=60°,侧棱PA⊥底面ABCD,E是PC的中点.
(Ⅰ)证明:PA∥平面EBD;
(Ⅱ)若直线PC与平面EBD所成角的大小为60°,求PA的长.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.若tan(α+β)=$\frac{2}{5}$,tan(β-$\frac{π}{4}$)=$\frac{1}{4}$,则$\frac{1}{tan(α+\frac{π}{4})}$=$\frac{3}{22}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.学校重视高三学生对数学选修课程的学习,在选修系列4中开设了4-1,4-2,4-3,4-4,4-5共5个专题课程,要求每个学生必须且只能选修其中1门课程,设A、B、C、D是高三某班的4名学生.
(1)求恰有2个专题没有被这4名学生选择的概率;
(2)设这4名学生中选择4-4专题的人数为ξ,求ξ的分布列及数学期望E(ξ).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.数列{an}中,a1=$\frac{3}{5}$,an+1=$\frac{3{a}_{n}}{{a}_{n}+1}$.
(1)求an
(2)求Sn=$\frac{1}{a{\;}_{1}}$+$\frac{1}{a_{2}}$+…+$\frac{1}{a_{n}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.如图,已知椭圆$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)的左右焦点分别为F1,F2,离心率为$\frac{{\sqrt{2}}}{2}$,它的四个顶点连成的菱形的面积为8$\sqrt{2}$.过动点P(不在x轴上)的直线PF1,PF2与椭圆的交点分别为A,B和C,D.
(1)求此椭圆的标准方程;
(2)是否存在点P,使|AB|=2|CD|,若存在求出点P的坐标;若不存在,请说明理由.
(3)若点P在双曲线$\frac{x^2}{4}-\frac{y^2}{2}$=1(除顶点外)上运动,证明:|AB|+|CD|为定值,并求出此定值.

查看答案和解析>>

同步练习册答案