精英家教网 > 高中数学 > 题目详情
17.已知Sn表示等差数列{an}的前n项和,且$\frac{a_1}{a_5}=\frac{3}{7}$,那么$\frac{S_5}{{{S_{20}}}}$(  )
A.$\frac{1}{9}$B.$\frac{1}{10}$C.$\frac{1}{8}$D.$\frac{1}{3}$

分析 由题意易得a1=3d,进而可用d表示S5和S20,可得$\frac{S_5}{{{S_{20}}}}$的值.

解答 解:∵Sn表示等差数列{an}的前n项和,且$\frac{a_1}{a_5}=\frac{3}{7}$,
∴7a1=3a5,∴7a1=3(a1+4d),
∴a1=3d,
∴S5=5a1+$\frac{5×4}{2}$d=25d,
S20=20a1+$\frac{20×19}{2}$d=250d,
∴$\frac{S_5}{{{S_{20}}}}$=$\frac{25d}{250d}$=$\frac{1}{10}$,
故选B.

点评 本题考查等差数列的通项和求和公式,考查运算能力,属基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

7.已知m、n表示两条不同的直线,α、β表示两个不同的平面,且m⊥α,n?β,则“α⊥β”是“m∥n”的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.根据如下样本数据:
x345678
y-3.0-2.00.5-0.52.54.0
得到的回归方程为$\widehat{y}$=$\widehat{b}$x+$\widehat{a}$,则(  )
A.a>0,b>0B.a<0,b<0C.a>0,b<0D.a<0,b>0

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知tanθ=-$\frac{1}{3}$,则$\frac{7sinθ-3cosθ}{4sinθ+5cosθ}$的值为$-\frac{16}{11}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.在△ABC中,a、b、c分别是A、B、C的对边,且a2+c2-b2+ac=0
(1)求角B的大小;
(2)若△ABC中sinC=2sinA,且b=$\sqrt{14}$,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.如图,在矩形ABCD中,AB=2,AD=1,在平面内将矩形ABCD绕点B按顺时针方向旋转60°后得到矩形A′BC′D′,则点D′到直线AB的距离是$\sqrt{3}+\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知$\overrightarrow{a}$=(sinx,cosx),$\overrightarrow{b}$=(sinx,k),$\overrightarrow{c}$=(-2cosx,sinx-k),若f(x)=$\overrightarrow{a}•(\overrightarrow{b}+\overrightarrow{c})$,求方程f(x)=$\frac{1}{2}$的解集.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知点A(2,0),B(0,4),点P是过点M(0,-1)的直线l上任意一点,∠APB是锐角,求l的斜率的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知过点M (2,1)的直线l和椭圆x2+4y2=36相交于点A、B,且线段AB恰好以M为中点,求直线l的方程和线段AB的长.

查看答案和解析>>

同步练习册答案