精英家教网 > 高中数学 > 题目详情
18.已知在△ABC中,AB=4,AC=6,BC=$\sqrt{7}$,其外接圆的圆心为O,则$\overrightarrow{AO}$$•\overrightarrow{BC}$10.

分析 根据向量数量积的几何意义即可得到答案.

解答 解:$\overrightarrow{AO}$$•\overrightarrow{BC}$=$\overrightarrow{AO}$($\overrightarrow{AC}$$-\overrightarrow{AB}$)=$\overrightarrow{AO}•\overrightarrow{AC}$-$\overrightarrow{AO}$•$\overrightarrow{AB}$,
如图,根据向量数量积的几何意义得)$\overrightarrow{AO}•\overrightarrow{AC}$-$\overrightarrow{AO}$•$\overrightarrow{AB}$=6|$\overrightarrow{AE}$|-4|$\overrightarrow{AF}$|=6×3-4×2=10,
故答案为:10.

点评 本小题主要考查向量在几何中的应用等基础知识,解答关键是利用向量数量积的几何意义.属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

8.命题$p:?x∈(0,\frac{π}{2}),f(x)<0$,则?p:$?x∈(0,\frac{π}{2}),f(x)≥0$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知直线l:y=kx与椭圆C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$交于A、B两点,其中右焦点F的坐标为(c,0),且AF与BF垂直,则椭圆C的离心率的取值范围为(  )
A.$[{\frac{{\sqrt{2}}}{2},1})$B.$({0,\frac{{\sqrt{2}}}{2}}]$C.$({\frac{{\sqrt{2}}}{2},1})$D.$({0,\frac{{\sqrt{2}}}{2}})$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知函数f(x)=kx,g(x)=$\frac{lnx}{x}$,若?xi∈[$\frac{1}{e}$,e],(i=1,2)使得f(xi)=g(xi),(i=1,2),则实数k的取值范围是(  )
A.[$\frac{1}{{e}^{2}}$,$\frac{1}{2e}$)B.[$\frac{1}{2e}$,$\frac{1}{e}$]C.(0,$\frac{1}{{e}^{2}}$)D.($\frac{1}{e}$,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知等比数列{an}满足a1+a3+a7=22,a5+a7+a11=88,则a7+a9+a13=(  )
A.121B.154C.176D.352

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知椭圆$\frac{x^2}{9}+\frac{y^2}{5}=1$的右焦点为F,P是椭圆上一点,点$A({0,2\sqrt{3}})$,当△APF的周长最大时,△APF的面积等于(  )
A.$\frac{{11\sqrt{3}}}{4}$B.$\frac{{21\sqrt{3}}}{4}$C.$\frac{11}{4}$D.$\frac{21}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.设点O在△ABC的内部,点D,E分别为边AC,BC的中点,且$|{\overrightarrow{OD}+2\overrightarrow{DE}}|=1$,则$|{\overrightarrow{OA}+2\overrightarrow{OB}+3\overrightarrow{OC}}|$=2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知对数函数f(x)=logax,若f-1(2)=$\frac{1}{4}$,则a=$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.若函数 f(x)=ae-x-ex为奇函数,则f(x-1)<e-$\frac{1}{e}$的解集为(  )
A.(-∞,0)B.(-∞,2)C.(2,+∞)D.(0,+∞)

查看答案和解析>>

同步练习册答案