精英家教网 > 高中数学 > 题目详情
4.用数字1,2,3,4,5组成没有重复数字的五位数,其中偶数的个数为(  )
A.24B.48C.60D.72

分析 根据题意,分2步进行分析:①、在2、4之中任选1个,安排在个位,②、将剩下的4个数字安排在其他四个数位,分别求出每一步的情况数目,由分步计数原理计算可得答案.

解答 解:根据题意,分2步进行分析:
①、要求五位数为偶数,需要在2、4之中任选1个,安排在个位,有2种情况,
②、将剩下的4个数字安排在其他四个数位,有A44=24种情况,
则有2×24=48个五位偶数,
故选:B.

点评 本题考查分步计数原理的应用,要根据偶数的特点分析个位数字,再分析其他的数位.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

14.若实数x,y满足$\left\{\begin{array}{l}{x≥1}\\{y≥0}\\{x+y≤4}\end{array}\right.$则z=2x+y的最大值是8.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.(1-$\frac{1}{{x}^{2}}$)(1+x)6展开式中x2的系数为(  )
A.-15B.0C.15D.30

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.函数$y=\sqrt{{{log}_{0.1}}(2x-1)}$的定义域为($\frac{1}{2},1$].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.在△ABC中,内角A,B,C的对边分别为a,b,c.
(1)求证:sin3B=3sinB-4sin3B;
(2)若A=2B,b=3c,求sin(B-$\frac{π}{3}$)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知函数f(x)=lnx-$\frac{x-a}{x}$.
(Ⅰ)讨论函数f(x)的单调性;
(Ⅱ)证明:x>0,x<(x+l)ln(x+1),
(Ⅲ)比较:($\frac{100}{99}$)100,e的大小关系,(e为自然对数的底数).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.公差为d的等差数列{an},若a1=d≠0,且其前四项和S4=am,则m=(  )
A.6B.8C.10D.12

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.复数z满足|z-4i|-|z+4i|=4,则z在复平面上对应点的轨迹方程为$\frac{{y}^{2}}{4}-\frac{{x}^{2}}{12}=1$(y<0).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知函数f(x)=2x的反函数为y=g(x),
(Ⅰ)若函数y=g(4-bx)在[1,+∞)上有最小值为3,求b的值;
(Ⅱ)若函数y=g(x)的图象经过点(6,a+1),且关于x的方程2ax-9x-m=0在区间[-1,1]上有解,求m的取值范围;
(Ⅲ)若函数h(x)=9x-k•3x+1(x≤0)有最小值-1,求k的值.

查看答案和解析>>

同步练习册答案