精英家教网 > 高中数学 > 题目详情
13.某市乘坐出租车的收费办法如表:
(1)不超过4千米的里程收费12元;
(2)超过4千米的里程按每千米2元收费(对于其中不足千米的部分,若其小于0.5千米则不收费,若其大于或等于0.5千米则按1千米收费);
当车程超过4千米时,另收燃油附加费1元.
相应系统收费的程序框图如图所示,其中x(单位:千米)为行驶里程,y(单位:元)为所收费用,用[x]表示不大于x的最大整数,则图中①处应填(  )
A.y=2[x+$\frac{1}{2}$]+4B.y=2[x+$\frac{1}{2}$]+5C.y=2[x-$\frac{1}{2}$]+4D.y=2[x+$\frac{1}{2}$]+5

分析 根据已知中的收费标准,求当x>4时,所收费用y的表达式,化简可得答案.

解答 解:由已知中,超过4千米的里程按每千米2元收费(对于其中不足千米的部分,若其小于0.5千米则不收费,若其大于或等于0.5千米则按1千米收费);
当车程超过4千米时,另收燃油附加费1元.
可得:当x>4时,所收费用y=12+[x-4+$\frac{1}{2}$]×2+1=2[x+$\frac{1}{2}$]+5,
故选:B.

点评 本题考查的知识点是分段函数的应用,函数模型的选择与应用,难度中档.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

3.下列函数求导运算正确的个数为(  )
①(3x)′=3xlog3e;②${({{{log}_2}x})^′}=\frac{1}{xln2}$③(ex)′=ex;④${({\frac{1}{lnx}})^′}=x$.
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知A,B两地相距2km,从A,B两处发出两束探照灯正好射在上方一架飞机上(如图),求飞机的高度h.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知实数x,y满足,2x+4y=1,则x+2y的最大值是(  )
A.-2B.4C.$\frac{1}{2}$D.-1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.设i为虚数单位,则(x-i)6的展开式中含x4的项为(  )
A.-15x4B.15x4C.-20ix4D.20ix4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知函数f(x)=ax2+bx-2lnx(a>0,b∈R),若对任意x>0都有f(x)≥f(2)成立,则(  )
A.lna>-b-1B.lna≥-b-1C.lna<-b-1D.lna≤-b-1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知等差数列{an}的前n项和为Sn,且$\frac{{s}_{2016}}{2016}-\frac{{s}_{2015}}{2015}$=3,则a2016-a2014的值为(  )
A.-3B.0C.6D.12

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.双曲线x2-$\frac{{y}^{2}}{3}$=1的两条渐近线夹角是(  )
A.30°B.60°C.90°D.120°

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知函数f(x)=ex(x+a)-x2+bx,曲线y=f(x)在点(0,f(0))处的切线方程为y=x-2.
(1)求a,b的值;
(2)求f(x)的单调区间及极值.

查看答案和解析>>

同步练习册答案