精英家教网 > 高中数学 > 题目详情
9.已知z0=-2+2i,|z-z0|=$\sqrt{2}$.
(1)求复数z在复平面内对应的点的轨迹;
(2)求|z|的最大值和最小值.

分析 (1)设出复数z,然后求解即可.
(2)利用复数的轨迹方程,结合几何意义求解即可.

解答 解:(1)设复数z=x+yi,z0=-2+2i,|z-z0|=$\sqrt{2}$.
则$\sqrt{{(x+2)}^{2}+{(y-2)}^{2}}=\sqrt{2}$,
即(x+2)2+(y-2)2=2,
复数z在复平面内对应的点的轨迹是以(-2,2)为圆心以$\sqrt{2}$为半径的圆.
(2)由(1)可知|z|的最大值为:$\sqrt{{(0+2)}^{2}+{(0-2)}^{2}}+\sqrt{2}$=$3\sqrt{2}$
最小值$\sqrt{{(0+2)}^{2}+{(0-2)}^{2}}-\sqrt{2}$=$\sqrt{2}$.

点评 本题考查复数的代数形式的混合运算,复数的几何意义,复数的模的求法,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

19.设直线l过点P(-1,0)且倾斜角为$\frac{π}{3}$,则直线l被椭圆$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{2}$=1截得的弦长为$\frac{4\sqrt{22}}{7}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知函数f(x)=2sin(ωx+θ ) (ω>0)的图象如图所示,则ω=2,若将函数f(x)的图象向左平移φ $({0<φ<\frac{π}{2}})$个单位后得到一个偶函数,则φ=$\frac{π}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.若x∈[-$\frac{5π}{12}$,-$\frac{π}{3}$],则y=tan(x+$\frac{2π}{3}$)-tan(x+$\frac{π}{6}$)+cos(x+$\frac{π}{6}$)的最大值是$\frac{11\sqrt{3}}{6}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知sin($\frac{π}{4}$+α)=$\frac{1}{3}$,α是第二象限角,则sin(2α+$\frac{5π}{6}$)=$\frac{4\sqrt{2}-7\sqrt{3}}{18}$或-$\frac{7\sqrt{3}+4\sqrt{2}}{18}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知O为△ABC的外接圆圆心,AB=2a,AC=$\frac{2}{a}$,∠BAC=120°,若$\overrightarrow{AO}$=x$\overrightarrow{AB}$+y$\overrightarrow{AC}$,则3x+6y的最小值为6+2$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.在等差数列{an}中,若2(a3+a4+a5)+3(a9+a11)=42,则S13=26.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.如图,在四棱锥P-ABCD中,PA⊥平面ABCD,∠ABC=∠ACD=90°,∠BAC=∠CAD=60°,E为PD的中点,F在AD上且∠FCD=30°.
(1)求证:CE∥平面PAB;
(2)若PA=2AB=2,求四面体P-ACE的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.正四棱锥(底面是正方形,顶点在底面上的射影是底面中心)S-ABCD的底面边长为4,高为4,点E、F、G分别为SD,CD,BC的中点,动点P在正四棱锥的表面上运动,并且总保持PG∥平面AEF,动点P的轨迹的周长为(  )
A.$\sqrt{5}$+$\sqrt{6}$B.2$\sqrt{5}$+2$\sqrt{6}$C.$\sqrt{5}$+$\frac{{\sqrt{6}}}{2}$D.2$\sqrt{5}$+$\sqrt{6}$

查看答案和解析>>

同步练习册答案