精英家教网 > 高中数学 > 题目详情
11.若椭圆的两焦点与短轴两端点在单位圆上,则此椭圆的内接正方形的边长为$\frac{2\sqrt{6}}{3}$.

分析 由题意设椭圆方程为$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0),由椭圆的两焦点与短轴两端点在单位圆上,求出b=c=1,a=$\sqrt{2}$,由此能求出此椭圆的内接正方形的边长.

解答 解:不妨设椭圆方程为$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0),
∵椭圆的两焦点与短轴两端点在单位圆上,
∴依题意,得b=c=1,a=$\sqrt{2}$,
∴椭圆方程为$\frac{{x}^{2}}{2}+{y}^{2}=1$,
设此椭圆的内接正方形在第一象限的顶点坐标为(x0,x0),
代入椭圆方程,得${x}_{0}=\frac{\sqrt{6}}{3}$,
∴正方形边长为$\frac{2\sqrt{6}}{3}$.
故答案为:$\frac{2\sqrt{6}}{3}$.

点评 本题考查椭圆方程的求法,是中档题,解题时要认真审题,注意椭圆性质的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

1.通过观察,下列数列哪些收敛?哪些发散?并求收敛数列的极限;
(1){$\frac{(-1)^{n}}{n+1}$};
(2){(-1)n$\frac{n}{n+1}$};
(3){($\frac{3}{4}$)n+1};
(4){2n};
(5){($\frac{a}{a+1}$)n}(a>0为常数).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.如图,在正四棱柱ABCD-A1B1C1D1中,AD=1,D1D=2,点P为棱CC1的中点.
(1)设二面角A-A1B-P的大小为θ,求sinθ的值;
(2)设M为线段A1B上得一点,求$\frac{AM}{AP}$的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.设实数x,y满足约束条件$\left\{\begin{array}{l}x-2y-3≤0\\ x+2y-3≤0\\ x≥-3\end{array}\right.$,则z=-2x+3y的取值范围是[-6,15].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知椭圆$C:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的短轴长为2,离心率为$\frac{{\sqrt{2}}}{2}$,直线l:y=kx+m与椭圆C交于A,B两点,且线段AB的垂直平分线通过点$(0\;,\;-\frac{1}{2})$.
(Ⅰ)求椭圆C的标准方程;
(Ⅱ)求△AOB(O为坐标原点)面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.将函数f(x)=$\sqrt{3}$cos(πx)图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),再把图象上所有的点向右平移1个单位长度,得到函数g(x)的图象,则函数g(x)的单调区间是(  )
A.[4k+1,4k+3](k∈Z)B.[2k+1,2k+3](k∈Z)C.[2k+1,2k+2](k∈Z)D.[2k-1,2k+2](k∈Z)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.执行如图所示的程序框图,若输出的S=18,则判断框内应填入的条件是(  )
A.k>2?B.k>3?C.k>4?D.k>5?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.函数f(x)=$\left\{\begin{array}{l}{ax+b,x<-1}\\{ln(x+a),x≥-1}\\{\;}\end{array}\right.$的图象如图所示,则f(-3)等于(  )
A.-$\frac{1}{2}$B.-$\frac{5}{4}$C.-1D.-2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.若函数y=2x上存在点(x,y)满足约束条件$\left\{\begin{array}{l}x+y-3≤0\\ x-2y-3≤0\\ x≥m\end{array}\right.$,则实数m的最大值为(  )
A.$\frac{1}{2}$B.1C.$\frac{{\sqrt{2}}}{2}$D.2

查看答案和解析>>

同步练习册答案