精英家教网 > 高中数学 > 题目详情
9.下列函数中,周期为π,且在$[\frac{π}{4},\frac{π}{2}]$上为减函数的是(  )
A.$y=cos(x+\frac{5π}{2})$B.$y=cos(2x+\frac{5π}{2})$C.$y=sin(x+\frac{5π}{2})$D.$y=sin(2x+\frac{5π}{2})$

分析 由条件利用诱导公式,正弦函数、余弦函数的周期性和单调性,逐一判断各个选项的正确性,从而得出结论.

解答 解:由于y=cos(x+$\frac{5π}{2}$)=cos(x+$\frac{π}{2}$)=-sinx的周期为2π,故排除A.
由于y=cos(2x+$\frac{5π}{2}$)=cos(2x+$\frac{π}{2}$)=-sin2x在$[\frac{π}{4},\frac{π}{2}]$上为增函数,故排除B.
由于y=sin(x+$\frac{5π}{2}$)=sin(x+$\frac{π}{2}$)=cosx的周期为2π,故排除C.
由于y=sin(2x+$\frac{5π}{2}$)=sin(2x+$\frac{π}{2}$)=cos2x的周期为π,且在$[\frac{π}{4},\frac{π}{2}]$上为减函数,故满足条件,
故选:D.

点评 本题主要考查诱导公式,正弦函数、余弦函数的周期性和单调性,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

19.李师傅早上8点出发,在快餐店买了一份早点,快速吃完后,驾车进入限速为80km/h的收费道路,当他到达收费亭时却拿到一张因超速的罚款单,这时,正好是上午10点钟,他看看自己车上的里程表,表上显示在这段时间内共走了165km.根据以上信息,收费人员出示这张罚款单的主要理由是超速行驶.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知Ω是不等式组$\left\{\begin{array}{l}{y≥2}\\{x-y≥1}\\{x+y≤6}\end{array}\right.$所确定的平面区域,记包含区域Ω的半径最小的圆为A,若在圆A内随机取出一点B,则点B在Ω内的概率为(  )
A.-$\frac{1}{π}$B.1-$\frac{2}{π}$C.$\frac{1}{π}$D.$\frac{2}{π}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知函数f(x)=xetx-ex+1,其中t∈R,e=2.71828…是自然对数的底数.
(Ⅰ)当t=0时,求函数f(x)的最大值;
(Ⅱ)证明:当t<1-$\frac{1}{e}$时,方程f(x)=1无实数根;
(Ⅲ)若函数f(x)是(0,+∞)内的减函数,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.如图是一个空间几何体的三视图(俯视图外框为正方形),则这个几何体的体积为48-3π.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.如图,在四棱锥P-ABCD中,PA⊥平面ABCD,底面ABCD是边长为1的菱形,且∠BAD=60°,
(Ⅰ)求证:平面PBD⊥平面PAC;
(Ⅱ)若PA=$\sqrt{3}$,求三棱锥C-PBD的高.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知函数f(x)=sin(ωx+φ)的单调增区间为$[kπ-\frac{π}{12}$,kπ+$\frac{5π}{12}]$(k∈Z),则函数f(x)在区间$[0,\frac{π}{2}]$的取值范围是(  )
A.$[-\frac{{\sqrt{3}}}{2},1]$B.$[-\frac{1}{2},\frac{{\sqrt{3}}}{2}]$C.$[-\frac{{\sqrt{3}}}{2},\frac{{\sqrt{3}}}{2}]$D.$[-\frac{1}{2},1]$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.边长为2的正方形ABCD,对角线的交点为E,则($\overrightarrow{AB}$+$\overrightarrow{AC}$)•$\overrightarrow{AE}$=6.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.利用逆矩阵解方程组$\left\{\begin{array}{l}{2x+y=8}\\{4x-5y=2}\end{array}\right.$.

查看答案和解析>>

同步练习册答案