精英家教网 > 高中数学 > 题目详情
10.已知ABCD-A1B1C1D1是边长为1的正方体,P为线段AB1上的动点,Q为底面ABCD上的动点,则PC1+PQ最小值为(  )
A.$1+\frac{{\sqrt{2}}}{2}$B.$\sqrt{3}$C.2D.$\frac{{1+\sqrt{5}}}{2}$

分析 如图所示,把上图中的△ABB1延AB1上转90°,得到下图,当C1Q⊥AB时,PC1+PQ=CQ最小.

解答 解:如图所示,把上图中的△ABB1沿AB1上转90°,得到下图,当C1Q⊥AB时,PC1+PQ=CQ最小,
PC1=$\sqrt{2}$,PA=$\sqrt{2}$-1,PQ=$\frac{\sqrt{2}-1}{\sqrt{2}}$,
所以PC1+PQ=1+$\frac{\sqrt{2}}{2}$,
故选:A.

点评 多面体和旋转体表面上的最短距离问题的解法:求多面体表面上两点间的最短距离,一般将表面展开为平面图形,从而把它转化为平面图形内两点连线的最短长度问题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

12.已知tanα,tanβ是方程x2+3$\sqrt{3}$x+4=0的两根,则tan(α+β)等于(  )
A.-3B.-$\sqrt{3}$C.$\sqrt{3}$D.3

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.设f(x)是定义在R上且周期为2的函数,在区间[-1,1]上,f(x)=$\left\{\begin{array}{l}{ax+1,-1≤x<0}\\{\frac{bx+2}{x+1},0≤x≤1}\end{array}\right.$,其中a,b∈R,若f($\frac{1}{2}$)=f($\frac{3}{2}$),则3a+2b=-2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.设a∈R,函数f(x)=2x2+(x-a)|x-a|,g(x)=lnx;
(1)若f(0)=1,试判断y=f[g(x)]在[e,+∞)上的单调性(无需证明);
(2)求f(x)的最小值;
(3)设h(x)=2x2+(3a-2)x-(5a2-7a-3),且x∈(a,+∞),求不等式f(x)>h(x)的解集.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知F1,F2是椭圆$\frac{y^2}{4}+\frac{x^2}{2}$=1的两焦点,P是椭圆在第一象限弧上一点,且满足$\overrightarrow{P{F_1}}•\overrightarrow{P{F_2}}$=1,直线l:y=$\sqrt{2}$x+m与椭圆交于A,B两点.
(1)求点P的坐标;
(2)求△PAB面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知实数x,y,z满足2x+y+3z=32,则$\sqrt{{{(x-1)}^2}+{{(y+2)}^2}+{z^2}}$的最小值为$\frac{16\sqrt{14}}{7}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知函数f(x)=f(4x),当x∈[1,4)时,f(x)=lnx,若区间[1,16)内,函数g(x)=f(x)-ax有三个不同的零点,则实数a的取值范围是(  )
A.($\frac{ln2}{2}$,$\frac{1}{e}$)B.($\frac{ln2}{8}$,$\frac{1}{4e}$)C.($\frac{ln2}{8}$,$\frac{1}{2e}$)D.($\frac{ln2}{8}$,$\frac{ln2}{4}$)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知函数f(x)=2cos2$\frac{x}{2}$+$\sqrt{3}$sinx.
(1)求函数f(x)的最小正周期和值域;
(2)若α为第二象限角,且f(α+$\frac{π}{3}$)=-$\frac{1}{5}$,求$\frac{cos2α}{1-tanα}$的值.

查看答案和解析>>

同步练习册答案