分析 可作图,取AB中点D,从而有$\overrightarrow{OA}+\overrightarrow{OB}=2\overrightarrow{OD}$,这样即可得出$\overrightarrow{OC}=-2\overrightarrow{OD}$,从而有D,O,C三点共线,且得到$OD=\frac{1}{3}CD$,这样便可得出△AOB与△ABC的面积之比.
解答
解:如图,取AB中点D,则:$\overrightarrow{OA}+\overrightarrow{OB}=2\overrightarrow{OD}$;
∴由$\overrightarrow{OA}+\overrightarrow{OB}+\overrightarrow{OC}=\overrightarrow{0}$得,$2\overrightarrow{OD}+\overrightarrow{OC}=\overrightarrow{0}$;
∴$\overrightarrow{OC}=-2\overrightarrow{OD}$;
∴D,O,C三点共线,且OD=$\frac{1}{3}CD$;
∴△AOB与△ABC的面积之比是$\frac{1}{3}$.
故答案为:$\frac{1}{3}$.
点评 考查向量加法的平行四边形法则,共线向量基本定理,以及向量数乘的几何意义,三角形的面积公式.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 存在x0∈R,使得${x_0}^2+1>0$ | B. | 存在x0∈R,使得${x_0}^2+1≤0$ | ||
| C. | 存在x0∈R,使得${x_0}^2+1<0$ | D. | 存在x0∈R,使得${x_0}^2+1≥0$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 3 | B. | 5 | C. | $\frac{3}{2}$ | D. | $\frac{5}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{16}{29}$ | B. | $\frac{16}{27}$ | C. | $\frac{11}{13}$ | D. | $\frac{13}{29}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 充分而不必要条件 | B. | 必要而不充分条件 | ||
| C. | 充分必要条件 | D. | 既不充分也不必要条件 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 既不是奇函数也不是偶函数 | B. | 既是奇函数又是偶函数 | ||
| C. | 是偶函数 | D. | 是奇函数 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com