·ÖÎö £¨¢ñ£©ÓÉÌâÒâµÃµ½a£¬bµÄ¹ØÏµ£¬µÃµ½ÍÖÔ²CµÄ·½³ÌΪ$\frac{{x}^{2}}{3{b}^{2}}+\frac{{y}^{2}}{{b}^{2}}=1$£®°ÑµãP£¨$\frac{\sqrt{3}}{2}$£¬$\frac{\sqrt{3}}{2}$£©´úÈëÇóµÃb2=1£¬½ø¶øµÃa2=3£¬ÔòÍÖÔ²·½³Ì¿ÉÇó£»
£¨¢ò£©ÈôÖ±ÏßlµÄбÂʲ»´æÔÚʱ£¬²»·ÁÉèlµÄ·½³ÌΪx=1£¬´úÈë$\frac{{x}^{2}}{3}+{y}^{2}=1$£¬ÇóµÃ|MN|=$\frac{2\sqrt{6}}{3}$¡Ù$\sqrt{3}$£¬²»ºÏÌâÒ⣮ÈôÖ±ÏßlµÄбÂÊ´æÔÚʱ£¬ÉèlµÄ·½³ÌΪy=kx+m£¬ÓÉÌâÒ⣬ÓÐ$\frac{|m|}{\sqrt{1+{k}^{2}}}=1$µÃµ½mÓëkµÄ¹ØÏµ£®ÁªÁ¢Ö±Ïß·½³ÌºÍÍÖÔ²·½³Ì£¬ÓÉÏÒ³¤¹«Ê½µÃµ½|MN|=$\frac{2\sqrt{6}|k|\sqrt{1+{k}^{2}}}{1+3{k}^{2}}=\sqrt{3}$£¬½â·½³ÌÇóµÃkµÄÖµ£®
½â´ð ½â£º£¨¢ñ£©ÓÉÌâÒ⣬ÓÐe2=1-$\frac{{b}^{2}}{{a}^{2}}$=$\frac{2}{3}$£¬µÃa2=3b2£¬¼´ÍÖÔ²CµÄ·½³ÌΪ$\frac{{x}^{2}}{3{b}^{2}}+\frac{{y}^{2}}{{b}^{2}}=1$£®
¡ßµãPÔÚCÉÏ£¬½«µãP£¨$\frac{\sqrt{3}}{2}$£¬$\frac{\sqrt{3}}{2}$£©µÄ×ø±ê´úÈ룬µÃb2=1£¬½ø¶øa2=3£¬
¡àÍÖÔ²CµÄ·½³ÌΪ$\frac{{x}^{2}}{3}+{y}^{2}=1$£»
£¨¢ò£©µ±Ö±ÏßlµÄбÂʲ»´æÔÚʱ£¬²»·ÁÉèlµÄ·½³ÌΪx=1£¬´úÈë$\frac{{x}^{2}}{3}+{y}^{2}=1$£¬
µÃM£¨1£¬$\frac{\sqrt{6}}{3}$£©£¬N£¨1£¬-$\frac{\sqrt{6}}{3}$£©£¬|MN|=$\frac{2\sqrt{6}}{3}$¡Ù$\sqrt{3}$£¬²»ºÏÌâÒ⣮
µ±Ö±ÏßlµÄбÂÊ´æÔÚʱ£¬ÉèlµÄ·½³ÌΪy=kx+m£¬
ÓÉÌâÒ⣬ÓÐ$\frac{|m|}{\sqrt{1+{k}^{2}}}=1$£¬¼´m2=k2+1£®
½«y=kx+m´úÈë$\frac{{x}^{2}}{3}+{y}^{2}=1$£¬µÃ£¨1+3k2£©x2+6kmx+3m2-3=0£¬
ÉèM£¨x1£¬y1£©£¬N£¨x2£¬y2£©£¬Ôòx1+x2=$\frac{-6km}{1+3{k}^{2}}$£¬x1x2=$\frac{3{m}^{2}-3}{1+3{k}^{2}}$£¬
¡à|MN|=$\sqrt{1+{k}^{2}}|{x}_{1}-{x}_{2}|=\sqrt{1+{k}^{2}}\sqrt{£¨{x}_{1}+{x}_{2}£©^{2}-4{x}_{1}{x}_{2}}$=$\sqrt{1+{k}^{2}}$¡Á$\frac{2\sqrt{3£¨3{k}^{2}+1-{m}^{2}£©}}{1+3{k}^{2}}$
=$\frac{2\sqrt{6}|k|\sqrt{1+{k}^{2}}}{1+3{k}^{2}}=\sqrt{3}$£¬ÕûÀí£¬µÃk4-2k2+1=0£¬½âµÃk2=1£¬k=¡À1£®
×ÛÉÏ£¬¿ÉÖªÖ±ÏßlµÄбÂÊΪ¡À1£®
µãÆÀ ±¾Ì⿼²éÁËÍÖÔ²·½³ÌµÄÇ󷨣¬¿¼²éÁËÖ±ÏߺÍÔ²×¶ÇúÏßµÄλÖùØÏµ£¬ÑµÁ·ÁËÏÒ³¤¹«Ê½µÄÓ¦Óã¬ÊÇÖеµÌ⣮
| Äê¼¶ | ¸ßÖÐ¿Î³Ì | Äê¼¶ | ³õÖÐ¿Î³Ì |
| ¸ßÒ» | ¸ßÒ»Ãâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õÒ» | ³õÒ»Ãâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
| ¸ß¶þ | ¸ß¶þÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õ¶þ | ³õ¶þÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
| ¸ßÈý | ¸ßÈýÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õÈý | ³õÈýÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | Ò»ÇÐÆæÊý¶¼ÊôÓÚS | B£® | żÊý4k-2£¨k¡ÊZ£©¶¼²»ÊôÓÚS | ||
| C£® | Èôx£¬y¡ÊS£¬Ôòxy¡ÊS | D£® | Èôx£¬yÊôÓÚS£¬Ôòx+y¡ÊS |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | B£® | C£® | D£® |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | x+2y-8=0 | B£® | 2x-y-8=0 | C£® | x+2y-4=0 | D£® | 2x-y=0 |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | 2 | B£® | 3 | C£® | 4 | D£® | 5 |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | 6£¨310-1£© | B£® | $\frac{1}{6}$£¨310-1£© | C£® | 6£¨1-310£© | D£® | $\frac{1}{6}$£¨1-310£© |
²é¿´´ð°¸ºÍ½âÎö>>
¹ú¼ÊѧУÓÅÑ¡ - Á·Ï°²áÁбí - ÊÔÌâÁбí
ºþ±±Ê¡»¥ÁªÍøÎ¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨Æ½Ì¨ | ÍøÉÏÓк¦ÐÅÏ¢¾Ù±¨×¨Çø | µçÐÅթƾٱ¨×¨Çø | ÉæÀúÊ·ÐéÎÞÖ÷ÒåÓк¦ÐÅÏ¢¾Ù±¨×¨Çø | ÉæÆóÇÖȨ¾Ù±¨×¨Çø
Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com