分析 由题意和正弦定理以及和差角的三角函数公式可得sinAcosB=3sinBcosA,由同角三角函数基本关系整体代入可得.
解答 解:∵△ABC中acosB-bcosA=$\frac{1}{2}$c,
∴由正弦定理可得sinAcosB-sinBcosA=$\frac{1}{2}$sinC,
∴2sinAcosB-2sinBcosA=sinC=sin(A+B),
∴2sinAcosB-2sinBcosA=sinAcosB+sinBcosA,
∴sinAcosB=3sinBcosA,
∴$\frac{tanA}{tanB}$=$\frac{sinAcosB}{cosAsinB}$=3,
故答案为:3.
点评 本题考查正弦定理解三角形,涉及和差角的三角函数公式以及同角三角函数基本关系,属基础题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 横坐标伸长到原来的3倍,纵坐标变为原来的3倍 | |
| B. | 横坐标缩小到原来的$\frac{1}{3}$倍,纵坐标变为原来的$\frac{1}{3}$倍 | |
| C. | 横坐标伸长到原来的$\frac{1}{3}$倍,纵坐标变为原来的3倍 | |
| D. | 横坐标伸长到原来的3倍,纵坐标变为原来的$\frac{1}{3}$倍 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{4}{5}$ | B. | -$\frac{4}{5}$ | C. | $\frac{3}{5}$ | D. | -$\frac{3}{5}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | -$\frac{4}{3}$ | B. | -$\frac{3}{4}$ | C. | $\frac{3}{4}$ | D. | $\frac{4}{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 命题“p或q”为真命题,则命题p和命题q均为真命题 | |
| B. | 命题“已知A、B为一个三角形的两内角,若A>B,则sinA>sinB”的逆命题为真命题 | |
| C. | “若a>b,则2a>2b-1”的否命题为“若a<b,则2a<2b-1” | |
| D. | “a=1”是“直线x-ay+1=0与直线x+ay-2=0互相垂直”的充要条件. |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{2}$ | B. | $\frac{\sqrt{2}}{2}$ | C. | $\frac{\sqrt{3}}{2}$ | D. | -$\frac{\sqrt{3}}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (x+3)2+y2=2 | B. | x2+(y+3)2=4 | C. | (x+3)2+y2=2 | D. | (x-3)2+y2=4 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com