精英家教网 > 高中数学 > 题目详情
如图所示,动物园要建造2间面积相同的矩形动物居室,如果可供建造围墙的材料总长是24m,设这两间动物居室的宽为x(单位:m),两间动物居室总面积为y(单位:m2),(注:围墙的厚度忽略不计)
(Ⅰ)求出y与x之间的函数解析式,并写出函数的定义域;
(Ⅱ)当宽x为多少时所建造的两间动物居室总面积最大?并求出总面积的最大值.
考点:函数模型的选择与应用
专题:应用题,函数的性质及应用
分析:(1)设出动物居室的宽,把长用宽表示,直接利用矩形面积得函数解析式;
(2)直接利用二次函数的性质求最值.
解答: 解:(1)每间动物居室的宽为xm,则长为
24-3x
2
m,
则每间动物居室的面积y=x•
24-3x
2
=-
3
2
x2
+12x.
24-3x
2
>0,x>0,
∴0<x<8,
∴y=-
3
2
x2
+12x,(0<x<8);
(2)由(1)得y=-
3
2
x2
+12x=-
3
2
(x-4)2
+24,(0<x<8).
二次函数开口向下,对称轴方程为x=4
∴当x=4时,y有最大值24.
答:宽为4m时才能使每间动物居室最大,每间动物居室的最大面积是24m2
点评:本题考查了函数模型的选择及应用,考查了利用二次函数求最值,是中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知公式:cosθcos(60°-θ)cos(60°+θ)=
1
4
cos3θ,则tan5°tan10°tan50°tan55°tan65°tan70°=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

下列各角中与240°角终边相同的角为(  )
A、
3
B、-
6
C、-
3
D、
6

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在直角△ABC中,B=90°,BC=1,AB=
3
,其中D,E分别是线段AB和AC的点,且
AD
AB
=
AE
AC
=λ(0<λ<1),将△ADE沿直线DE翻折成△A′DE,使得平面A′DE⊥平面BCED.
(Ⅰ)证明:DE⊥A′B;
(Ⅱ)是否存在这样的实数λ,使得二面角B-A′C-E的大小为90°,如果存在,请求出λ的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

若函数f(x)=2sin(ωx+φ),x∈R(其中ω>0,|φ|<
π
2
)的最小正周期是π,且f(0)=
3
,则ω=
 
,φ=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

对某小区居民一个月内参加娱乐活动的次数进行统计,随机抽取M名居民作为样本,得到这M名居民参加娱乐活动的次数,根据此数据作出了频数与频率的统计表和频率分布直方图如下:
(I)求出表中的M,p及图中a的值;
(Ⅱ)试估计这M名居民在一个月内参加娱乐活动的平均次数(同一组的数据用该组的中间值作代表);
(Ⅲ)在所取样本中,从参加娱乐活动次数不少于20次的居民中任取2人,求两人参加娱乐活动次数都在区间[20,25)内的概率.
分组频数频率
[10,15)100.25
[15,20)24n
[20,25)mp
[25,30)10.05
合计M1

查看答案和解析>>

科目:高中数学 来源: 题型:

如图AC是圆O的直径,B、D是圆O上两点,AC=2BC=2CD=2,PA⊥圆O所在的平面,
BM
=
1
3
BP

(1)求证:CM∥平面PAD;
(2)若CM与平面PAC所成角的正弦值为
5
5
时,求AP的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)函数f(x)=ax(a>0,a≠1)在区间[1,2]上的最大值与最小值之和为6,求a的值;
(2)0≤x≤2,求函数y=4 x-
1
2
-3•2x+5的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知△ABC的三个内角A、B、C,向量
m
=(sinA,1),
n
=(1,-
3
cosA),且
m
n
.则角A=
 

查看答案和解析>>

同步练习册答案