精英家教网 > 高中数学 > 题目详情
6.函数f(x)=sin(ωx+φ)(ω>0,|φ|<$\frac{π}{2}$)的最小正周期是π,若其图象向右平移$\frac{π}{3}$个单位后得到的函数为奇函数,则函数f(x)的图象(  )
A.关于点$(\frac{π}{6},0)$对称B.关于x=$\frac{π}{6}$对称C.关于点($\frac{π}{12}$,0)对称D.关于x=$\frac{π}{12}$对称

分析 由条件利用正弦函数的周期性求得ω,再根据奇偶性求出φ,可得函数的解析式;再根据函数y=Asin(ωx+φ)的图象变换规律、正弦函数的图象的对称性,得出结论.

解答 解:由函数f(x)=sin(ωx+φ)(ω>0,|φ|<$\frac{π}{2}$)的最小正周期是π,可得$\frac{2π}{ω}$=π,
求得ω=2.
把f(x)的图象向右平移$\frac{π}{3}$个单位后得到的图象对应函数为y=sin[2(x-$\frac{π}{3}$)+φ]=sin(2x+φ-$\frac{2π}{3}$),
再根据得到的函数为奇函数,可得φ-$\frac{2π}{3}$=kπ,k∈z,即φ=kπ+$\frac{2π}{3}$,故φ=-$\frac{π}{3}$,f(x)=sin(2x-$\frac{π}{3}$).
令x=$\frac{π}{6}$,求得f(x)=0,可得函数f(x)的图象关于点$(\frac{π}{6},0)$对称,
故选:A.

点评 本题主要考查正弦函数的周期性、奇偶性,函数y=Asin(ωx+φ)的图象变换规律,正弦函数的图象的对称性,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

16.如果一个几何体的三视图如图所示(单位:cm),那么这个几何体的外接球的表面积是(  )
A.17πcm2B.34πcm2C.68πcm2D.136πcm2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.在平面直角坐标系xOy中,直线l的参数方程为$\left\{\begin{array}{l}x=-\sqrt{5}+\frac{{\sqrt{2}}}{2}t\\ y=\frac{{\sqrt{2}}}{2}t\end{array}\right.$(其中t为参数)以O为极点,x轴的正半轴为极轴,取相同的单位长度建立极坐标,曲线C的极轴方程为ρ=4cosθ.
(Ⅰ)求曲线C的直角坐标方程及直线l的普通方程;
(Ⅱ)将曲线C上所有点的横坐标缩短为原来的$\frac{1}{2}$(纵坐标不变),再将所得曲线向左平移1个单位,得到曲线C1,求曲线C1上的到直线l的距离的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知实数x,y满足$\left\{\begin{array}{l}{x-2y+1≥0}\\{x<2}\\{x+y-1≥0}\end{array}\right.$,则z=2x-2y-3的取值范围是(  )
A.[-$\frac{1}{3}$,3]B.[-2,3]C.[-$\frac{1}{3}$,3)D.$[-\frac{11}{3},3)$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知椭圆E的中心在坐标原点O,它的长轴长,短轴长分别为2a,2$\sqrt{2}$,右焦点F(c,0),直线l:cx-a2=0与x轴相交于点A,$\overrightarrow{OF}=2\overrightarrow{FA}$,过点A的直线m与椭圆E交于P,Q两点.
(Ⅰ)求椭圆E的方程;
(Ⅱ)若以线段PQ为直径的圆过原点O,求直线m的方程;
(Ⅲ)设$\overrightarrow{AP}=λ\overrightarrow{AQ}({λ>1})$,过点P且平行于直线l的直线与椭圆E相交于另一点M,求证:$\overrightarrow{FM}=-λ\overrightarrow{FQ}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知向量$\overrightarrow m=({sin\frac{x}{3},-1})$,$\overrightarrow n=({\frac{{\sqrt{3}}}{2}A,\frac{1}{2}Acos\frac{x}{3}}),(A>0)$,函数f(x)=$\overrightarrow n•\overrightarrow m$的最大值为2.
(1)求f(x)的最小正周期和解析式;
(2)设α,β∈[0,$\frac{π}{2}$],f(3α+$\frac{π}{2}$)=$\frac{10}{13}$,f(3β+2π)=$\frac{6}{5}$,求sin(α-β)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.不可能以直线$y=\frac{1}{2}x+b$作为切线的曲线是(  )
A.y=sinxB.$y=\frac{1}{x}$C.y=lnxD.y=ex

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.点M(1,1)到抛物线y=ax2的准线的距离为2,则a=(  )
A.$\frac{1}{4}$或$-\frac{1}{12}$B.$-\frac{1}{12}$C.$\frac{1}{4}$D.4或-12

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.圆$\left\{\begin{array}{l}x=-1+\sqrt{2}cosθ\\ y=1+\sqrt{2}sinθ\end{array}\right.$(θ为参数)被直线y=0截得的劣弧长为(  )
A.$\frac{{\sqrt{2}π}}{2}$B.πC.$2\sqrt{2}π$D.

查看答案和解析>>

同步练习册答案