精英家教网 > 高中数学 > 题目详情
18.过双曲线x2-$\frac{{y}^{2}}{15}$=1的右支上一点P,分别向圆C1:(x+4)2+y2=4和圆C2:(x-4)2+y2=1作切线,切点分别为M,N,则|PM|2-|PN|2的最小值为13.

分析 求得两圆的圆心和半径,设双曲线x2-$\frac{{y}^{2}}{15}$=1的左右焦点为F1(-4,0),F2(4,0),连接PF1,PF2,F1M,F2N,运用勾股定理和双曲线的定义,结合三点共线时,距离之和取得最小值,计算即可得到所求值.

解答 解:圆C1:(x+4)2+y2=4的圆心为(-4,0),半径为r1=2;
圆C2:(x-4)2+y2=1的圆心为(4,0),半径为r2=1,
设双曲线x2-$\frac{{y}^{2}}{15}$=1的左右焦点为F1(-4,0),F2(4,0),
连接PF1,PF2,F1M,F2N,可得
|PM|2-|PN|2=(|PF1|2-r12)-(|PF2|2-r22
=(|PF1|2-4)-(|PF2|2-1)
═|PF1|2-|PF2|2-3=(|PF1|-|PF2|)(|PF1|+|PF2|)-3
=2a(|PF1|+|PF2|-3=2(|PF1|+|PF2|)-3≥2•2c-3=2•8-3=13.
当且仅当P为右顶点时,取得等号,即最小值13.
故答案为:13.

点评 本题考查最值的求法,注意运用双曲线的定义和圆的方程,考查三点共线的性质,以及运算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

8.已知函数f(x)=ln$\frac{x}{2}$+$\frac{1}{2}$,g(x)=ex-2,若g(m)=f(n)成立,则n-m的最小值为(  )
A.1-ln2B.ln2C.2$\sqrt{e}$-3D.e2-3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知椭圆的标准方程为$\frac{x^2}{10}+{y^2}=1$,则椭圆的焦点坐标为(  )
A.$({\sqrt{10},0}),({-\sqrt{10},0})$B.$({0,\sqrt{10}}),({0,-\sqrt{10}})$C.(0,3),(0,-3)D.(3,0),(-3,0)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知数列{an}的前n项和为Sn,S1=6,S2=4,Sn>0,且S2n,S 2n-1.S 2n+2成等比数列,S2n-1.S2n+2,S2n+1成等差数列,则a2016等于-1009.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.经过双曲线$\frac{{x}^{2}}{9}$-$\frac{{y}^{2}}{16}$=1右焦点F的直线1交双曲线于A、B两点,点M是直线x=$\frac{9}{5}$上任意一点,直线MA、MF、MB的斜率分别为k1、k2、k3,则(  )
A.k1+k3=k2B.k1+k3=2k2C.k1k3=k2D.k1k3=k${\;}_{2}^{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知双曲线C为:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0),其左右顶点分别为A、B,曲线上一点P,kPA、kPB分别为直线PA、PB的斜率,且kPA•kPB=3,过左焦点的直线l与双曲线交于两点M,N,|MN|的最小值为4,则双曲线的方程为(  )
A.$\frac{{x}^{2}}{4}$-$\frac{{y}^{2}}{12}$=1B.$\frac{9{x}^{2}}{4}$-$\frac{3{y}^{2}}{4}$=1
C.$\frac{9{x}^{2}}{4}$-$\frac{3{y}^{2}}{4}$=1和$\frac{{x}^{2}}{12}$-$\frac{{y}^{2}}{4}$=1D.$\frac{{x}^{2}}{4}$-$\frac{{y}^{2}}{12}$=1或$\frac{9{x}^{2}}{4}$-$\frac{3{y}^{2}}{4}$=1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.以下四个命题中,其中真命题的个数为(  )
①从匀速传递的产品生产流水线上,质检员每10分钟从中抽取一件产品进行某项指标检测,这样的抽样是分层抽样.
②若命题p:所有幂函数的图象不过第四象限,命题q:存在x∈R,使得x-10>lgx,则命题p且q为真.
③两个随机变量的线性相关性越强,则相关系数的绝对值就越接近于1.
④若a,b∈[0,1],则不等式a2+b2≤1成立的概率为$\frac{π}{4}$.
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.在锐角△ABC中,内角A,B,C的对边分别为a,b,c,且满足:2asin A=(2b-c)sin B+(2c-b)sinC.
(I) 求角A的大小:
(2)若a=2,求△ABC的周长l的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.如图,在△ABC中,|$\overrightarrow{CA}$|=$\sqrt{6}$,|$\overrightarrow{CB}$|=2,∠ACB=75°.
(1)求|$\overrightarrow{AB}$|的值;
(2)若$\overrightarrow{AD}$=$\sqrt{3}$$\overrightarrow{DB}$,求证:$\overrightarrow{CD}$⊥$\overrightarrow{AB}$.

查看答案和解析>>

同步练习册答案