精英家教网 > 高中数学 > 题目详情
11.Sn=$\frac{1}{{2}^{2}-1}$+$\frac{1}{{4}^{2}-1}$+…+$\frac{1}{(2n)^{2}-1}$=$\frac{n}{2n+1}$.

分析 根据 $\frac{1}{{(2n)}^{2}-1}$=$\frac{1}{2}$($\frac{1}{2n-1}$-$\frac{1}{2n+1}$),用裂项法进行数列求和.

解答 解:∵$\frac{1}{{(2n)}^{2}-1}$=$\frac{1}{(2n+1)•(2n-1)}$=$\frac{1}{2}$($\frac{1}{2n-1}$-$\frac{1}{2n+1}$),
∴Sn=$\frac{1}{{2}^{2}-1}$+$\frac{1}{{4}^{2}-1}$+…+$\frac{1}{(2n)^{2}-1}$
=$\frac{1}{2}$[(1-$\frac{1}{3}$)+($\frac{1}{3}$-$\frac{1}{5}$)+($\frac{1}{5}$-$\frac{1}{7}$)+…+($\frac{1}{2n-1}$-$\frac{1}{2n+1}$)=$\frac{1}{2}$(1-$\frac{1}{2n+1}$)
=$\frac{n}{2n+1}$,
故答案为:$\frac{n}{2n+1}$.

点评 本题主要考查利用裂项法进行数列求和,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

18.已知函数f(x)=$\frac{1}{2}$ax2-(2a+1)x+2lnx(a∈R).
(1)当a=1时,求f(x)的极值点.
(2)求y=f(x)的单调区间;
(3)设g(x)=x2-2x,当a≤$\frac{1}{2}$时,若对任意x1,x2∈(0,2],使得f(x1)<g(x2)恒成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.对于数89,进行如下计算:82+92=145,12+42+52=42,42+22=20…,如此反复运算,则第2016次运算的结果是(  )
A.16B.37C.58D.89

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知y=xcosx,则y′=$\frac{1}{2}sin2x•{x}^{cosx-1}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.数列{an}的前n项和为Sn=10n-n2,求数列{|an|}的前n项和.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知点F1,F2为椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1的两焦点,P为该椭圆C上的任意一点,△PF1F2的面积的最大值为$\sqrt{3}$,
且椭圆C过点(1,$\frac{\sqrt{3}}{2}$).
(I)求椭圆C的方程;
(II)点A为椭圆C的右顶点,过点B(1,0)作直线l与椭圆C相交于E,F两点,直线AE,AF与直线x=3分别交于不同的两点M,N,求$\overrightarrow{EM}$•$\overrightarrow{FN}$的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.设f0(x)=cosx,f1(x)=f′0(x),f2(x)=f′1(x),fn+1(x)=f′n(x)(n∈N),则f2012(x)=(  )
A.sinxB.-sinxC.cosxD.-cosx

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.设i为虚数单位,n为正整数.
(1)证明:(cosx+isinx)n=cosnx+isinnx;
(2)结合等式“[1+(cosx+isinx)]n=[(1+cosx)+isinx]n”,证明:1+${C}_{n}^{1}$cosx+${C}_{n}^{2}$cos2x+…+${C}_{n}^{n}$cosnx=2ncosn$\frac{x}{2}$cos$\frac{nx}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知函数f(x)=2x3-3x2-f′(0)x+c(c∈R),其中f(0)为函数f(x)在x=0处的导数.
(1)求函数f(x)的递减区间;
(2)若函数f(x)的极大值和极小值互为相反数,求函数f(x)的解析式.

查看答案和解析>>

同步练习册答案