精英家教网 > 高中数学 > 题目详情
3.经统计,在银行一个营业窗口每天上午9点钟排队等候的人数及相应概率如下:
排队人数01234≥5
概率0.10.160.30.30.10.04
则该营业窗口上午9点钟时,至少有2人排队的概率是0.74.

分析 由互斥事件的概率公式可得.

解答 解:由表格可得至少有2人排队的概率
P=0.3+0.3+0.1+0.04=0.74
故答案为:0.74

点评 本题考查互斥事件的概率公式,属基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

13.如图所示,在四棱锥中A-BCDE中,AE⊥面EBCD,且四边形EBCD是菱形,∠BED=120°,AE=BE=2,F是BC上的动点(不包括端点).
(1)当F是BC的中点时,求点F到面ACD的距离;
(2)当F在由B向C移动的过程中,能否存在一个位置使得二面角F-AD-C的余弦值为$\frac{15}{\sqrt{231}}$?若存在,求出BF的长,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.若在圆C:x2+(y-a)2=4上有且仅有两个点到原点O距离为1,则实数a的取值范围是-3<a<-1或1<a<3.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知函数f(x)=2sin(2x+φ)(|φ|<$\frac{π}{2})$的图象过点$(0,\sqrt{3})$,则f(x)的图象的一个对称中心是(  )
A.$(-\frac{π}{3},0)$B.$(-\frac{π}{6},0)$C.$(\frac{π}{6},0)$D.$(\frac{π}{4},0)$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.设{an}是等差数列,{bn}是各项都为正整数的等比数列,且a1=b1=1,a13b2=50,a8+b2=a3+a4+5,n∈N*
(Ⅰ)求{an},{bn}的通项公式;
(Ⅱ)若数列{dn}满足${d_n}{d_{n+1}}={(\frac{1}{2})^{-8+{{log}_2}{b_{n+1}}}}$(n∈N*),且d1=16,试求{dn}的通项公式及其前2n项和S2n

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.在△ABC中,∠ABC=120°,BA=2,BC=3,D,E是线段AC的三等分点,则$\overrightarrow{BD}$•$\overrightarrow{BE}$的值为$\frac{11}{9}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知数列{an}的各项均为正数,其前n项的和为Sn,且对任意的m,n∈N*,
都有(Sm+n+S12=4a2ma2n
(1)求$\frac{{a}_{2}}{{a}_{1}}$的值;
(2)求证:{an}为等比数列;
(3)已知数列{cn},{dn}满足|cn|=|dn|=an,p(p≥3)是给定的正整数,数列{cn},{dn}的前p项的和分别为Tp,Rp,且Tp=Rp,求证:对任意正整数k(1≤k≤p),ck=dk

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.设a,b为两条不同的直线,α,β为两个不重合的平面.下列命题中正确的是(  )
A.若α⊥β,a⊥α,则a∥β
B.若a,b与α所成的角相等,则a与b平行或相交
C.若α内有三个不共线的点到β的距离相等,则α∥β
D.若α∩β=b,a?α且a∥β,则a∥b

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.下列函数中,既为奇函数又在(0,+∞)内单调递减的是(  )
A.f(x)=xsinxB.f(x)=x${\;}^{-\frac{1}{2}}$C.f(x)=$\frac{1-{e}^{x}}{1+{e}^{x}}$D.f(x)=x-$\frac{3}{x}$

查看答案和解析>>

同步练习册答案