精英家教网 > 高中数学 > 题目详情

(本小题满分12分)设函数f(x)=m-mx-1.
(1)若对于一切实数x,f(x)<0恒成立,求m的取值范围;
(2)对于x∈[1,3],f(x)<0恒成立,求m的取值范围.


(1)-4<m≤0
(2)m<

解析解:(1)要使mx2-mx-1<0恒成立,
若m=0,显然-1<0;
若m≠0,则⇒-4<m<0.
∴-4<m≤0.
(2)当m=0时,f(x)=-1<0显然恒成立;
当m>0时,由于f(1)=-1<0,要使f(x)<0在x∈[1,3]上恒成立,只要f(3)<0即可.
即9m-3m-1<0得m<,即0<m<;
当m<0时,若Δ<0,由(1)知显然成立,此时-4<m<0;若Δ≥0,则m≤-4,由于函数f(x)<0在x∈[1,3]上恒成立,只要f(1)<0即可,此时f(1)=-1<0显然成立,综上可知:m<.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

f (x)是偶函数,且在(0,+∞)上是增函数,若x∈[,1]时,不等式f (ax+1)≤f (x-2)恒成立,则求实数a的取值范围?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题12分)已知函数(1)求的定义域;(2)求的值域。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分14分)
已知函数的图象关于原点对称,且
(Ⅰ)求函数的解析式;
(Ⅱ)解不等式
(Ⅲ)若上是增函数,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

,, 其中是不等于零的常数,
(1)、(理)写出的定义域(2分);
(文)时,直接写出的值域(4分)
(2)、(文、理)求的单调递增区间(理5分,文8分);
(3)、已知函数,定义:.其中,表示函数上的最小值,
表示函数上的最大值.例如:,则 ,   ,
(理)当时,设,不等式
恒成立,求的取值范围(11分);
(文)当时,恒成立,求的取值范围(8分);

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

随着机构改革工作的深入进行,各单位要减员增效,有一家公司现有职员2a人(140<2a<420,且a为偶数,每人每年可创利10万元.据评估,在经营条件不变的前提下,若裁员x人,则留岗职员每人每年多创利0.1x万元,但公司需付下岗职员每人每年4万元的生活费,并且该公司正常运转情况下,所裁人数不超过50人,为获得最大的经济效益,该公司应裁员多少人?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)
已知,函数
(1)求的反函数
(2)若在[0,1]上的最大值与最小值互为相反数,求
(3)若的图像不经过第二象限,求的取值范围

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)
已知函数,其图象过点(,).
(1)求的值及最小正周期;
(2)将函数的图象上各点的横坐标缩短到原来的,纵坐标不变,得到函数的图象,求函数在[0, ]上的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(12分)求函数的定义域:
(1)  
(2)      

查看答案和解析>>

同步练习册答案