精英家教网 > 高中数学 > 题目详情
已知向量
n
=(
3
sin
x
4
,-1),
n
=(cos
x
4
,cos2
x
4
),记f(x)=
m
n

(Ⅰ)求f(x)的值域和单调递增区间;
(Ⅱ)在△ABC中,角A、B、C的对边分别是a、b、c,且满足(2a-c)cosB=bcosC,若f(A)=-
1
2
,a=2,求△ABC的面积.
考点:余弦定理,平面向量数量积的运算
专题:三角函数的求值
分析:(Ⅰ)由条件利用两个向量的数量积公式、两角和差的三角公式可得f(x)=sin(
x
2
-
π
6
)-
1
2
,由此可得函数的值域.令 2kπ-
π
2
x
2
-
π
6
≤2kπ+
π
2
,k∈z,求得x的范围,可得函数的单调递增区间.
(Ⅱ)在△ABC中,由条件利用正弦定理可得cosB的值可得B的值.由 f(A)=-
1
2
,求得 A=
π
3
,可得 C=π-A-B的值,从而得到△ABC为等边三角形,再根据a=2,求得△ABC的面积S.
解答: 解:(Ⅰ)由题意可得f(x)=
m
n
=
3
sin
x
4
cos
x
4
-cos2
x
4
=
3
2
sin
x
2
-
1+cos
x
2
2
=sin(
x
2
-
π
6
)-
1
2

故函数的值域为[-
3
2
1
2
].
令 2kπ-
π
2
x
2
-
π
6
≤2kπ+
π
2
,k∈z,求得 4kπ-
3
≤x≤4kπ+
3
,k∈z,
故函数的单调递增区间为[4kπ-
3
,4kπ+
3
],k∈z.
(Ⅱ)在△ABC中,∵(2a-c)cosB=bcosC,由正弦定理可得 2sinAcosB-sinCcosB=sinBcosC,
即 2sinAcosB=sinA,∴cosB=
1
2
,B=
π
3

∵f(A)=sin(
A
2
-
π
6
)-
1
2
=-
1
2
,∴sin(
A
2
-
π
6
)=0,∴
A
2
-
π
6
=0,∴A=
π
3
,∴C=π-A-B=
π
3

∴A=B=C,∴△ABC为等边三角形,再根据a=2,可得△ABC的面积S=
1
2
×2×2sin
π
3
=
3
点评:本题主要考查两个向量的数量积公式、两角和差的三角公式、正弦函数的单调性、正弦定理的应用,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

若α∈(-
π
2
π
2
),则“α=
π
3
”是“cosα=
1
2
”的(  )
A、充分不必要条件
B、必要不充分条件
C、充分必要条件
D、既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:

在极坐标系中,过点M(2,0)的直线l与极轴的夹角α=
π
3

(Ⅰ)将l的极坐标方程写成ρ=f(θ)的形式
(Ⅱ)在极坐标系中,以极点为坐标原点,以极轴为x轴的非负半轴建立平面直角坐标系.若曲线C2
x=3sinθ
y=acosθ
(θ为参数,a∈R)与l有一个公共点在Y轴上,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

圆心在原点上与直线x+y-2=0相切的圆的方程为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}中,a1=2,an-an-1-2n=0,(n≥2,n∈N).
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设bn=
1
an+1
+
1
an+2
+
1
an+3
+…+
1
a2n
,求数列{bn}的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知{an}为单调递增的等比数列,且a2+a5=18,a3•a4=32,{bn}是首项为2,公差为d的等差数列,其前n项和为Sn
(1)求数列{an}的通项公式;
(2)当且仅当2≤n≤4,n∈N*,Sn≥4+d•log2an2成立,求d的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知点A(x1,y1),B(x2,y2),C(x3,y3)是抛物线y2=2px(p>0)上的不同三点,若△ABC的重心是抛物线的焦点F,则y1y2+y2y3+y1y3=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知变量x,y满足
2x-y≤0
x-2y+3≥0
x≥0
,则z=log2(x2+y2-4x+2y+4)的最小值是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知(2x-xlgx8的展开式中,二项式系数最大的项的值等于1120,则实数x的值为
 

查看答案和解析>>

同步练习册答案