精英家教网 > 高中数学 > 题目详情
已知{an}为单调递增的等比数列,且a2+a5=18,a3•a4=32,{bn}是首项为2,公差为d的等差数列,其前n项和为Sn
(1)求数列{an}的通项公式;
(2)当且仅当2≤n≤4,n∈N*,Sn≥4+d•log2an2成立,求d的取值范围.
考点:等比数列的性质
专题:计算题,等差数列与等比数列
分析:(1){an}为单调递增的等比数列,说明q>1,又根据a3•a4=a2•a5=32,a2+a5=18,列出关于a2,a5的方程组,解出a2,a5,最后根据等比数列的性质,求出{an}
(2)由题意{bn}是首项为2,公差为d的等差数列,写出Sn的表达式,代入Sn≥4+d•log2
a
2
n
,整理得d•n2+(4-5d)•n-8+4d≥0,按照当且仅当2≤n≤4,n∈N*,列出不等式组,求出d的取值范围.
解答: 解:(1)因为{an}为等比数列,所以a3•a4=a2•a5=32
所以
a2+a5=18
a2a5=32

所以a2,a5为方程 x2-18x+32=0的两根;
又因为{an}为递增的等比数列,所以 a2=2,a5=16,q3=8
从而q=2,
所以an=a2qn-2=2•2n-2=2n-1
(2)由题意可知:bn=2+(n-1)d,Sn=2n+
(n-1)•n
2
d

由已知可得:2n+
(n-1)•n
2
d≥4+(2n-2)d

所以d•n2+(4-5d)•n-8+4d≥0,
当且仅当2≤n≤4,且n∈N*时,上式成立,
设f(n)=d•n2+(4-5d)•n-8+4d,则d<0,
所以
f(1)<0
f(2)≥0
f(4)≥0
f(5)<0
d≤0
d<-3
⇒d<-3

所以d的取值范围为(-∞,-3).
点评:本题考查等比数列的性质,等差数列的前n项和公式,整系数二次函数的性质,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=
1
3
x3+ax,g(x)=-x2-a(a∈R).
(Ⅰ)若函数F(x)=f(x)-g(x)在x∈[1,+∞)上单调递增,求a的最小值;
(Ⅱ)若函数G(x)=f(x)+g(x)的图象与x轴有且只有一个交点,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知正项数列{an},其前n项和Sn,满足6Sn=
a
2
n
+3an+2,又a1,a2,a6是等比数列{bn}的前三项.
(1)求数列{an}与{bn}的通项公式;
(2)记Tn=a1bn+a2bn-1+…+anb1,n∈N+,证明3Tn+1=2bn+1-an+1(n∈N+).

查看答案和解析>>

科目:高中数学 来源: 题型:

设数列{an},{bn}满足a1=b1=6,a2=b2=4,a3=b3,{an-2}是等比数列,且数列{bn+1-bn}是等差数列,其中n∈N*
(1)求a3的值;
(2)求数列{an}和{bn}的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
n
=(
3
sin
x
4
,-1),
n
=(cos
x
4
,cos2
x
4
),记f(x)=
m
n

(Ⅰ)求f(x)的值域和单调递增区间;
(Ⅱ)在△ABC中,角A、B、C的对边分别是a、b、c,且满足(2a-c)cosB=bcosC,若f(A)=-
1
2
,a=2,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,菱形ABCD的边长为6,∠BAD=60°,AC∩BD=O.将菱形沿对角线AC折起,使得平面ABC⊥平面ADC,得到三棱锥B-ACD,M是棱BC上的一点.

(Ⅰ)若OM⊥BC,求证:BC⊥平面OMD;
(Ⅱ)若OM∥平面ABD,求三棱锥M-ABD的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

形如y=x 
1
xα
(x>0)的函数称为“幂指型函数”,它的求导过程可概括成:取对数--两边对x求导--代入还原;例如:y=xx(x>0),取对数lny=xlnx,对x求导
1
y
y′=lnx+1,代入还原y′=xx(lnx+1);给出下列命题:
①当α=1时,函数y=x 
1
xα
(x>0)的导函数是y′=
1-lnx
x2
x 
1
x
(x>0);
②当α>0时,函数y=x 
1
xα
(x>0)在(0,e 
1
α
)上单增,在(e 
1
α
,+∞)上单减;
③当b
1
α
e
1
e
时,方程bx=xα(b>0,b≠1,α≠0,x>0)有根;
④当α<0时,若方程xα=logbx(b>0,b≠1,x>0)有两根,则e 
1
αe
<b<1;
其中正确的命题是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

在实数集R中,我们定义的大小关系“>”为全体实数排了一个“序”,类似地,我们在复数集C上也可以定义一个称为“序”的关系,记为“?”.定义如下:对于任意两个复数z1=a1+b1i,z2=a2+b2i(a1,b1,a2,b2∈R,为虚数单位),“z1?z2”当且仅当“a1>a2”或“a1=a2且b1>b2”.现有以下命题:
①若z1?z2,则|z1|?|z2|;
②若z1?z2,则z12?z22
③若z1?z2,z2?z3,则z1?z3
④对于复数z?0,若z1?z2,则z•z1?z•z2
其中正确命题的序号的是
 
(写出所以正确命题的序号).

查看答案和解析>>

科目:高中数学 来源: 题型:

将函数f(x)=2sin(2x+
π
4
)的图象向右平移φ(φ>0)个单位,再将图象上每一点横坐标缩短到原来的
1
2
倍,所得图象关于直线x=
π
4
对称,则φ的最小正值为
 

查看答案和解析>>

同步练习册答案