【题目】设数列
的前
项和为
,已知
.
(1)令
,求数列
的通项公式;
(2)若数列
满足:
.
①求数列
的通项公式;
②是否存在正整数
,使得
成立?若存在,求出所有
的值;若不存在,请说明理由.
科目:高中数学 来源: 题型:
【题目】已知正方体
,点
,
,
分别是线段
,
和
上的动点,观察直线
与
,
与
.给出下列结论:
①对于任意给定的点
,存在点
,使得
;
②对于任意给定的点
,存在点
,使得
;
③对于任意给定的点
,存在点
,使得
;
④对于任意给定的点
,存在点
,使得
.
其中正确结论的个数是( ).
![]()
A.
个 B.
个 C.
个 D.
个
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】一个口袋内有
个不同的红球,
个不同的白球,
(1)从中任取
个球,红球的个数不比白球少的取法有多少种?
(2)若取一个红球记
分,取一个白球记
分,从中任取
个球,使总分不少于
分的取法有多少种?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆
的左、右焦点分别为
,上顶点为
,
的面积为1,且椭圆
的离心率为
.
(1)求椭圆
的标准方程;
(2)点
在椭圆上且位于第二象限,过点
作直线
,过点
作直线
,若直线
的交点
恰好也在椭圆
上,求点
的坐标.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】临近开学季,某大学城附近的一款“网红”书包销售火爆,其成本是每件15元.经多数商家销售经验,这款书包在未来1个月(按30天计算)的日销售量
(个)与时间
(天)的关系如下表所示:
时间( | 1 | 4 | 7 | 11 | 28 | … |
日销售量( | 196 | 184 | 172 | 156 | 88 | … |
未来1个月内,前15天每天的价格
(元/个)与时间
(天)的函数关系式为
(且
为整数),后15天每天的价格
(元/个)与时间
(天)的函数关系式为
(且
为整数).
(1)认真分析表格中的数据,用所学过的一次函数、反比例函数的知识确定一个满足这些数据
(个)与
(天)的关系式;
(2)试预测未来1个月中哪一天的日销售利润最大,最大利润是多少?
(3)在实际销售的第1周(7天),商家决定每销售1件商品就捐赠
元利润
给该城区养老院.商家通过销售记录发现,这周中,每天扣除捐赠后的日销售利润随时间
(天)的增大而增大,求
的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为了调查某大学学生在周日上网的时间,随机对
名男生和
名女生进行了不记名的问卷调查,得到了如下的统计结果:
表1:男生上网时间与频数分布表:
上网时间(分钟) |
|
|
|
|
|
人数 | 5 | 25 | 30 | 25 | 15 |
表2:女生上网时间与频数分布表:
上网时间(分钟) |
|
|
|
|
|
人数 | 10 | 20 | 40 | 20 | 10 |
(1)若该大学共有女生
人,试估计其中上网时间不少于
分钟的人数;
(2)完成表3的
列联表,并回答能否有
的把握认为“学生周日上网时间与性别有关”?
(3)从表3的男生中“上网时间少于
分钟”和“上网时间不少于
分钟”的人数中用分层抽样的方法抽取一个容量为
的样本,再从中任取两人,求至少有一人上网时间超过
分钟的概率.表3:
上网时间少于60分钟 | 上网时间不少于60分钟 | 合计 | |
男生 | |||
女生 | |||
合计 |
附:
,其中
,
| 0.50 | 0.40 | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
| 0.455 | 0.708 | 1.323 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥
中,平面
平面ABCD,
,
,底面ABCD是边长为2的菱形,点E,F分别为棱DC,BC的中点,点G是棱SC靠近点C的四等分点.
![]()
求证:(1)直线
平面EFG;
(2)直线
平面SDB.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,四边形ABCD是矩形,平面ABCD⊥平面BCE,BE⊥EC.
![]()
(1)求证:平面AEC⊥平面ABE;
(2)点F在BE上.若DE∥平面ACF,求
的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为了解某中学学生对《中华人民共和国交通安全法》的了解情况,调查部门在该校进行了一次问卷调查(共12道题),从该校学生中随机抽取40人,统计了每人答对的题数,将统计结果分成
,
,
,
,
,
六组,得到如下频率分布直方图.
![]()
(1)若答对一题得10分,未答对不得分,估计这40人的成绩的平均分(同一组中的数据用该组区间的中点值作代表);
(2)若从答对题数在
内的学生中随机抽取2人,求恰有1人答对题数在
内的概率.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com