精英家教网 > 高中数学 > 题目详情

【题目】设数列的前项和为,已知.

1)令,求数列的通项公式;

2)若数列满足:.

①求数列的通项公式;

②是否存在正整数,使得成立?若存在,求出所有的值;若不存在,请说明理由.

【答案】1;(2)①;②存在,

【解析】

1)由题,得,即可得到本题答案;

2)①由,得,所以,恒等变形得,,由此即可得到本题答案;

②由错位相减求和公式,得的前n项和,然后通过求的解,即可得到本题答案.

1)因为,所以,即

又因为,所以,即

所以数列是以2为公比和首项的等比数列,所以

2)①由(1)知,,当时,

又因为也满足上式,所以数列的通项公式为

因为,所以,所以

因为,所以数列是以1为首项和公差的等差数列,所以

②设,则

所以

两式相减得

所以

,∴

即:,即.

,则,即

所以,数列单调递减,

,因此,存在唯一正整数,使得成立.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知正方体,点 分别是线段 上的动点,观察直线 .给出下列结论:

①对于任意给定的点,存在点,使得

②对于任意给定的点,存在点,使得

③对于任意给定的点,存在点,使得

④对于任意给定的点,存在点,使得

其中正确结论的个数是( ).

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】一个口袋内有个不同的红球,个不同的白球,

(1)从中任取个球,红球的个数不比白球少的取法有多少种?

(2)若取一个红球记分,取一个白球记分,从中任取个球,使总分不少于分的取法有多少种?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的左、右焦点分别为,上顶点为的面积为1,且椭圆的离心率为.

1)求椭圆的标准方程;

2)点在椭圆上且位于第二象限,过点作直线,过点作直线,若直线的交点恰好也在椭圆上,求点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】临近开学季,某大学城附近的一款网红书包销售火爆,其成本是每件15元.经多数商家销售经验,这款书包在未来1个月(按30天计算)的日销售量(个)与时间(天)的关系如下表所示:

时间(/天)

1

4

7

11

28

日销售量(/个)

196

184

172

156

88

未来1个月内,前15天每天的价格(元/个)与时间(天)的函数关系式为(且为整数),后15天每天的价格(元/个)与时间(天)的函数关系式为(且为整数).

1)认真分析表格中的数据,用所学过的一次函数、反比例函数的知识确定一个满足这些数据(个)与(天)的关系式;

2)试预测未来1个月中哪一天的日销售利润最大,最大利润是多少?

3)在实际销售的第1周(7天),商家决定每销售1件商品就捐赠元利润给该城区养老院.商家通过销售记录发现,这周中,每天扣除捐赠后的日销售利润随时间(天)的增大而增大,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了调查某大学学生在周日上网的时间,随机对名男生和名女生进行了不记名的问卷调查,得到了如下的统计结果:

1:男生上网时间与频数分布表:

上网时间(分钟)

人数

5

25

30

25

15

2:女生上网时间与频数分布表:

上网时间(分钟)

人数

10

20

40

20

10

1)若该大学共有女生人,试估计其中上网时间不少于分钟的人数;

2)完成表3列联表,并回答能否有的把握认为学生周日上网时间与性别有关

3)从表3的男生中上网时间少于分钟上网时间不少于分钟的人数中用分层抽样的方法抽取一个容量为的样本,再从中任取两人,求至少有一人上网时间超过分钟的概率.3

上网时间少于60分钟

上网时间不少于60分钟

合计

男生

女生

合计

附:,其中

0.50

0.40

0.25

0.15

0.10

0.05

0.025

0.010

0.005

0.001

0.455

0.708

1.323

2.072

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,平面平面ABCD,底面ABCD是边长为2的菱形,点EF分别为棱DCBC的中点,点G是棱SC靠近点C的四等分点.

求证:(1)直线平面EFG

2)直线平面SDB.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四边形ABCD是矩形,平面ABCD⊥平面BCEBE⊥EC.

(1)求证:平面AEC⊥平面ABE

(2)FBE上.若DE∥平面ACF,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了解某中学学生对《中华人民共和国交通安全法》的了解情况,调查部门在该校进行了一次问卷调查(共12道题),从该校学生中随机抽取40人,统计了每人答对的题数,将统计结果分成六组,得到如下频率分布直方图.

1)若答对一题得10分,未答对不得分,估计这40人的成绩的平均分(同一组中的数据用该组区间的中点值作代表);

2)若从答对题数在内的学生中随机抽取2人,求恰有1人答对题数在内的概率.

查看答案和解析>>

同步练习册答案