精英家教网 > 高中数学 > 题目详情
8.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(x>0)的离心率等于$\frac{\sqrt{3}}{2}$,椭圆C上的点到焦点的距离的最大值为4+2$\sqrt{3}$.
(Ⅰ)求椭圆C的方程;
(Ⅱ)设椭圆C的左右顶点分别为A,B,过点P(-2,0)的动直线(x轴除外)与椭圆C相交于M,N两点,是否存在定直线l:x=t,使得AM与BN的交点Q总在直线l上?若存在,求出l的方程;若不存在,说明理由.

分析 (Ⅰ)运用离心率公式和最大值a+c,解方程即可得到a,c,求出b,进而得到椭圆方程;
(Ⅱ)求出A,B坐标,考虑MN斜率不存在,可得M,N坐标,求出直线AN,BN方程,求出交点,猜想:存在l:x=-8,再由分析法证明,设MN的方程是y=k(x+2),代入椭圆C的方程,运用韦达定理,即可得到存在定直线l:x=-8,使得AM与BN的交点Q总在直线l上.

解答 解:(Ⅰ)由$e=\frac{{\sqrt{3}}}{2}⇒\frac{c}{a}=\frac{{\sqrt{3}}}{2}$,…(2分)
又椭圆C上的点到焦点的距离的最大值$a+c=4+2\sqrt{3}$.
∴a=4,c=2$\sqrt{3}$,b=$\sqrt{{a}^{2}-{c}^{2}}$=$\sqrt{16-12}$=2,…(4分)
所以椭圆C方程是:$\frac{x^2}{16}+\frac{y^2}{4}=1$;…(5分)
(Ⅱ)A(-4,0).B(4,0),
当MN斜率不存在时,$M(-2,\sqrt{3}),N(-2,-\sqrt{3})$,
则AN的方程是:y=$\frac{\sqrt{3}}{2}$(x+4),
BN的方程是:y=$\frac{\sqrt{3}}{6}$(x-4),
交点的坐标是:$(-8,-2\sqrt{3})$,猜想:存在l:x=-8,
即直线l的方程是:x=-8使得AM与BN的交点Q总在直线l上.…(6分)
证明:设MN的方程是y=k(x+2),代入椭圆C的方程得:
(1+4k2)x2+16k2x+16k2-16=0,…(7分)
设M(x1,y1),N(x2,y2),Q(-8,y0
∴${x_1}+{x_2}=\frac{{-16{k^2}}}{{1+4{k^2}}},{x_1}{x_2}=\frac{{16{k^2}-16}}{{1+4{k^2}}}$,…(8分)
∵$\overrightarrow{AQ}=(-4,{y_0})$,$\overrightarrow{AM}$=(x1+4,y1),A,M,Q共线,
∴-4y1=y0(x1+4),
由x1+4≠0,可得y0=-$\frac{4{y}_{1}}{{x}_{1}+4}$…(10分),
又$\overrightarrow{BQ}=(-12,{y_0})$,$\overrightarrow{BN}=({x_2}-4,{y_2})$,
要证B,N,Q共线,即证$-12{y_2}=({x_2}-4)\frac{{-4{y_1}}}{{{x_1}+4}}$,
即证:3k(x2+2)(x1+4)=k(x1+2)(x2-4),
即证:x1x2+5(x1+x2)+16=0
因为:${x_1}{x_2}+5({x_1}+{x_2})+16=\frac{{16{k^2}-16}}{{1+4{k^2}}}-\frac{{80{k^2}}}{{1+4{k^2}}}+16=0$成立,…(12分)
所以点Q在直线BN上.
综上:存在定直线l:x=-8,使得AM与BN的交点Q总在直线l上.…(13分)

点评 本题考查椭圆方程求法,注意运用离心率公式和椭圆上点与焦点的最大值a+c,考查存在性问题的解法,注意运用猜想和分析法,考查化简整理的运算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

7.已知函数f(x)=$\left\{\begin{array}{l}4\;|{\;{{log}_2}x\;}|\;\;\;\;\;0<x<2\\ \frac{1}{2}{x^2}-5x+12\;\;\;\;\;x≥2\end{array}$,若存在实数a,b,c,d满足f(a)=f(b)=f(c)=f(d),若d>c>b>a>0,则abc(d-4)的取值范围是(  )
A.(8,9)B.(8,9]C.(12,32)D.[12,32)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.在棱长为2的正方体中,
(1)求异面直线BD与B1C所成的角
(2)求证:平面ACB1⊥平面B1D1DB.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知一个圆柱的底面半径为1,高为2,点O为这个圆柱底面圆的圆心,在这个圆柱内随机取一点M,则点M到点O的距离小于1的概率为$\frac{1}{3}$.(参考公式:V=$\frac{4}{3}$πR3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知各项均为正数的数列{an}的前n项和为Sn.数列{an}中的项按下列规律过程构成无穷多个行列式:|$\begin{array}{l}{a_1}{a_2}{a_3}\\{a_4}{a_5}{a_6}\\{a_7}{a_8}{a_9}\end{array}|,|\begin{array}{l}{a_7}{a_8}{a_9}\\{a_{10}}{a_{11}}{a_{12}}\\{a_{13}}{a_{14}}{a_{15}}\end{array}|,|\begin{array}{l}{a_{13}}{a_{14}}{a_{15}}\\{a_{16}}{a_{17}}{a_{18}}\\{a_{19}}{a_{20}}{a_{21}}\end{array}|…,记{A_i}为{a_i}$(i=1,2,3…)的代数余子式.
(1)若Sn=2n2+n,求A1,A4,A6,A9
(2)若数列{an}为等差数列,A3=-27$,\;{a_1}=5\;,\;{b_n}=\frac{a_n}{2^n}$,求数列{bn}的前n项和Tn
(3)数列{an}为公差不为0的等差数列,Ai=λ(Ai-k+Ai+k),其中i,i-k,i+k,k∈N*.试研究λ的所有可能值,并指出取到每个值时的条件(注:本小题将根据考生研究的情况分层评分).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.第26届世界大学生夏季运动会将于2011年8月12日到23日在深圳举行,为工作需要,组委会拟定组建一个“五人接待小组”,先在各中学进行海选,招募了12名男生和18名女生志愿者,将这30名志愿者的身高编成如图所示的茎叶图(单位:cm).若身高
在175cm以上(含175cm)定义为“高个子”,身高在175cm以下(不含175cm)定义为“非高个子”.
(1)从这30名志愿者选出5人,且5人中有“女高个子”,则有多少种不同的选法?
(2)若用分层抽样的方法从“高个子”和“非高个子”中共提取5人,再从这5人中选2人,那么至少有一人是“高个子”的概率是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知点P(x0,y0)(x0≠0)是抛物线x2=2y上的一动点,F为焦点,点M的坐标为(0,1).
(Ⅰ)求证:以MP为直径的圆截直线$y=\frac{1}{2}$所得的弦长为定值;
(Ⅱ)过点P作x轴的垂线交x轴于点A,过点P作该抛物线的切线l交x轴于点B.问:直线PB是否为∠APF的平分线?请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知x0(x0>1)是函数f(x)=lnx-$\frac{1}{x-1}$的一个零点,若a∈(1,x0),b∈(x0,+∞),则(  )
A.f(a)<0,f(b)<0B.f(a)>0,f(b)>0C.f(a)<0,f(b)>0D.f(a)>0,f(b)<0

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知函数f(x)=(x-1)2+a(lnx-x+1)(其中a∈R,且a为常数)
(Ⅰ)当a=4时,求函数y=f(x)的单调区间;
(Ⅱ)若对于任意的x∈(1,+∞),都有f(x)>0成立,求a的取值范围;
(Ⅲ)若方程f(x)+a+1=0在x∈(1,2)上有且只有一个实根,求a的取值范围.

查看答案和解析>>

同步练习册答案