精英家教网 > 高中数学 > 题目详情
19.为了调查某高中学生每天的睡眠时间,现随机对20名男生和20名女生进行问卷调查,结果如下:
睡眠时间(小时)[4,5)[5,6)[6,7)[7,8)[8,9]
女生人数24842
男生人数15653
(1)根据以上数据完成2×2列联表;
(2)是否有90%的把握认为“睡眠时间与性别有关”?
睡眠时间少于7小时睡眠时间不少于7小时合计
男生12820
女生14620
合计261440
附临界参考表
P(k2≥k00.150.100.050.0250.0100.0050.001
k02.0722.7063.8415.0246.6357.87910.828
附:${K^2}=\frac{{n{{({ad-bc})}^2}}}{{({a+b})({c+d})({a+c})({b+d})}}$.

分析 (1)根据所给数据可完成2×2列联表;
(2)利用公式求出K2,与临界值比较,可得结论.

解答 解:(1)由题意可得满足条件的2×2列联表如下图所示:

睡眠时间少于7小时睡眠时间不少于7小时合计
男生12820
女生14620
合计261440
(2)K2=$\frac{40×(12×6-14×8)^{2}}{26×14×20×20}$≈0.44,
∵0.44<2.706.
∴没有90%的把握认为“睡眠时间与性别有关”.

点评 本题考查2×2列联表,考查独立性检验知识,考查学生的计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

9.已知角θ的终边经过点P(x,3)(x>0)且$cosθ=\frac{{\sqrt{10}}}{10}$,则x等于(  )
A.-1B.1C.-9D.9

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.计算$cos\frac{π}{3}tan\frac{π}{4}+\frac{3}{4}{tan^2}\frac{π}{6}-sin\frac{π}{6}+{cos^2}\frac{π}{6}$的结果为(  )
A.1B.2C.4D.8

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.某校医务室为了预防流感,准备从高一年级的10个班中抽取23名同学进行健康检查,要求每个班被抽到的同学不少于2人,那么不同的抽取方法共有(  )
A.120种B.175种C.220种D.820种

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.判断两个圆C1:x2+y2+2x+2y-2=0与C2:x2+y2-4x-2y+1=0的位置关系.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知函数f(x)=xa的图象过点(4,2),令${a_n}=\frac{1}{f(n+1)+f(n)}$(n∈N*),记数列{an}的前n项和为Sn,则S2017=(  )
A.$\sqrt{2018}+1$B.$\sqrt{2018}-1$C.$\sqrt{2017}-1$D.$\sqrt{2017}+1$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.一个机器零件的三视图如图所示,其中侧视图是一个半圆与边长为2的正方形,俯视图是一个半圆内切于边长为2的正方形,则该机器零件的体积为(  )
A.$8+\frac{π}{3}$B.$8+\frac{π}{4}$C.$8+\frac{4π}{3}$D.$4+\frac{π}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知函数f(x)=sin(ωx+φ)(ω>0,0<φ<π)的周期为π,且f($\frac{π}{4}$)=0,将函数f(x)图象上的所有点的横坐标伸长为原来的2倍(纵坐标不变),再将所得图象向右平移$\frac{π}{2}$个单位长度后得到函数g(x)的图象.
(1)求函数f(x)与g(x)的解析式;
(2)是否存在x0∈($\frac{π}{6}$,$\frac{π}{4}$),使得f(x0),g(x0),f($\frac{π}{6}$)按照某种顺序成等差数列?若存在,请求出x0的值,若不存在,说明理由;
(3)求实数a,使得F(x)=f(x)+ag(x)在(0,2π)内恰有3个零点.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.做一个圆柱形锅炉,容积为V,两个底面的材料每单位面积的价格为a元,侧面的材料每单位面积的价格为b元,当造价最低时,锅炉的底面直径与高的比为(  )
A.$\frac{a}{b}$B.$\frac{a^2}{b}$C.$\frac{b}{a}$D.$\frac{b^2}{a}$

查看答案和解析>>

同步练习册答案