精英家教网 > 高中数学 > 题目详情
6.下列求导运算,正确的是(  )
A.(cosx)′=sinxB.${(\frac{sinx}{x^2})^'}=\frac{cosx}{2x}$
C.(ex)′=xex-1D.${(lgx)^'}=\frac{1}{xln10}$

分析 根据题意,依次计算选项中函数的导数,分析即可得答案.

解答 解:根据题意,依次分析选项:
对于A、(cosx)′=-sinx,A错误;
对于B、($\frac{sinx}{{x}^{2}}$)′=$\frac{(sinx)′•{x}^{2}-sinx•({x}^{2})′}{{x}^{4}}$=$\frac{cosx•x-2sinx}{{x}^{3}}$,B错误;
对于C、(ex)′=ex,C错误;
对于D、${(lgx)^'}=\frac{1}{xln10}$,D正确;
故选:D.

点评 本题考查导数的计算,关键是掌握导数的计算公式.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

5.将函数f(x)=sin2x的图象向右平移φ(0<φ<$\frac{π}{2}$)个单位后得到函数g(x)的图象,若函数g(x)在区间[0,$\frac{π}{3}$]上单调递增,则φ的取值范围是(  )
A.[$\frac{π}{12}$,$\frac{π}{4}$]B.[$\frac{π}{6}$,$\frac{5π}{12}$)C.[$\frac{π}{6}$,$\frac{π}{3}$]D.[$\frac{π}{6}$,$\frac{π}{4}$]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知i是虚数单位,a,b∈R,z1=a-1+(3-a)i,z2=b+(2b-1)i,z1=z2
(1)求a,b的值;
(2)若z=m-2+(1-m)i,m∈R,求证:|z+a+bi|≥$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.在数列{an}中,a1=1,an•an-1=an-1+(-1)n(n≥2,n∈N*),则a3的值是(  )
A.$\frac{1}{2}$B.$\frac{2}{3}$C.$\frac{3}{4}$D.1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.设函数f(x)=1-ex的图象与x轴相交于点P,则曲线在点P处的切线方程为(  )
A.ex+y=0B.ex-y=0C.x+y=0D.y-x=0

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.设a∈R,若函数y=ex+ax,x∈R有小于零的极值点,则实数a的取值范围是(  )
A.(-∞,-1)B.(-1,+∞)C.(-1,0)D.(-∞,0)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.若数列{an}的前n项和Sn=$\frac{2}{3}$n2-$\frac{1}{3}$n   则数列中a3等于(  )
A.3B.4C.6D.12

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.某市居民自来水收费标准如下:每户每月用水不超过4吨时,每吨为1.80元,当用水超过4吨时,超过部分每吨3.00元.某月甲、乙两户共交水费y元,已知甲、乙两用户该月用水量分别为5x,3x吨.
(Ⅰ) 若x=1,求该月甲、乙两户的水费;
(Ⅱ) 求y关于x的函数;
(Ⅲ) 若甲、乙两户该月共交水费26.4元,分别求出甲、乙两户该月的用水量.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.某射击队有8名队员,其中男队员5名,女队员3名,从中随机选3名队员参加射击表演活动.
(1)求选出的3名队员中有一名女队员的概率;
(2)求选出的3名队员中女队员人数比男队员人数多的概率.

查看答案和解析>>

同步练习册答案