精英家教网 > 高中数学 > 题目详情
18.已知函数f(x)=xn+mx的导函数f′(x)=2x+2,则${∫}_{1}^{3}$f(-x)dx=(  )
A.0B.3C.-$\frac{2}{3}$D.$\frac{2}{3}$

分析 f(x)=xn+mx的导函数f′(x)=2x+2,nxn-1+m=2x+2,f(x)=x2+2x.再利用微积分基本定理即可得出.

解答 解:∵f(x)=xn+mx的导函数f′(x)=2x+2,
∴nxn-1+m=2x+2,
解得n=2,m=2,
∴f(x)=x2+2x,
∴f(-x)=x2-2x,
∴${∫}_{1}^{3}$f(-x)dx=,则${∫}_{1}^{3}$(x2-2x)dx=($\frac{1}{3}{x}^{3}$-x2)|${\;}_{1}^{3}$=9-9-$\frac{1}{3}$+1=$\frac{2}{3}$,
故选:D.

点评 本题考查了导数的运算法则、微积分基本定理,属于基础题

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

8.已知函数f(x)=$\sqrt{3}$sinωx-2sin2$\frac{ωx}{2}$(ω>0)的最小正周期为3π.
(I)求函数f(x)在区间[-π,$\frac{3π}{4}$]上的最大值和最小值;
(Ⅱ)在△ABC中,a,b,c分别为角A,B,C所对的边,且a<b<c,$\sqrt{3}$a=2csinA,求角C的大小;
(Ⅲ)在(II)的条件下,若f($\frac{3}{2}$A+$\frac{π}{2}$)=$\frac{11}{13}$,求cosB的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.设扇形的半径长为2cm,面积为4cm2,则扇形的圆心角的弧度数是(  )
A.4B.3C.2D.1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知直线l1:ax-y-2=0与直线l2:$\frac{1}{2}$x-y-1=0互相垂直,则实数a的值是(  )
A.-2B.2C.0D.-2或0

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知直线l1:ax-y-2=0经过圆C:(x-1)2+y2=1的圆心.
(1)求a的值;
(2)求经过圆心C且与直线l:x-4y+1=0平行的直线l2的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知f(x)=$\frac{1}{3}$x3-$\frac{a}{2}$x2+2x+1,x1,x2是f(x)的两个极值点,且0<x1<1<x2<3,则实数a的取值范围为(3,$\frac{11}{3}$).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}$=1(a>0,b>0)的一个焦点为F,以F为圆心的圆与双曲线的两条渐近线分别相切于 A、B两点,且|AB|=$\sqrt{3}$b,则该双曲线的离心率为(  )
A.$\frac{{2\sqrt{3}}}{3}$B.$\frac{{3\sqrt{5}}}{4}$C.$2\sqrt{3}$D.$\sqrt{10}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.某工厂为了调查工人文化程度与月收入的关系,随机抽取了部分工人,得到如下列表:
文化程度与月收入列联表(单位:人)
月收入2000元以下月收入2000元及以上总计
高中文化以上104555
高中文化及以下203050
总计3075105
由上表中数据计算得K2=$\frac{{105×{{({10×30-20×45})}^2}}}{55×50×30×75}$≈6.109,请根据下表,估计有多大把握认为“文化程度与月收入有关系”(  )
A.1%B.99%C.2.5%D.97.5%

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.y=$\frac{{x}^{2}}{x+3}$的导数是(  )
A.$\frac{{x}^{2}-6x}{(x+3)^{2}}$B.$\frac{{x}^{2}+6x}{x+3}$C.$\frac{{x}^{2}}{(x+3)^{2}}$D.$\frac{{x}^{2}+6x}{(x+3)^{2}}$

查看答案和解析>>

同步练习册答案