精英家教网 > 高中数学 > 题目详情
已知函数f(x)=x2+2cosx,若f′(x)是f(x)的导函数,则函数f′(x)在原点附近的图象大致是(  )
A、
B、
C、
D、
考点:函数的图象
专题:函数的性质及应用
分析:由题可得f′(x)=2x-2sinx,判断导函数的奇偶性,利用特殊值的函数值推出结果即可.
解答:解:函数f(x)=x2+2cosx,∴f′(x)=2x-2sinx=2(x-sinx),
f′(-x)=-2x+2sinx=-(2x-2sinx)=-f′(x),
导函数是奇函数,
∵x∈(0,
π
2
),x>sinx>0,
∴B、C、D不正确.
故选:A.
点评:本题考查函数的图象,考查同学们对函数基础知识的把握程度以及数形结合的思维能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知圆C的参数方程为
x=cosθ+1
y=sinθ
(θ为参数),则点P(3,0)与圆C上的点的最近距离是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

以直角坐标系的原点O为极点,x轴正半轴为极轴,并在两种坐标系中取相同的长度单位,已知直线l的参数方程为
x=
1
2
+tcosα
y=tsinα
(t 为参数),曲线C的极坐标方程为ρ=
2cosθ
sin2θ

(1)求曲线C的直角坐标方程;
(2)若直线l与曲线C相交于A、B两点,求|AB|的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

函数y=a|x|与y=sinax(a>0且a≠1)在同一直角坐标系下的图象可能是(  )
A、
B、
C、
D、

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知线段AB=
2
,当点A在以原点O为圆心的单位圆上运动时,点B在x轴上滑动,设∠AOB=θ,记S(θ)为三角形AOB的面积,则S(θ)在[-
π
2
,0)∪(0,
π
2
]上的大致图象是(  )
A、
B、
C、
D、

查看答案和解析>>

科目:高中数学 来源: 题型:

某公司的一品牌电子产品,2013年年初,由于市场疲软,产品销售量逐渐下降,五月份公司加大了宣传力度,销售量出现明显的回升,九月份,公司借大学生开学之机,采取了促销等手段,产品的销售量猛增,十一月份之后,销售量有所回落.下面大致能反映出公司2013年该产品销售量的变化情况的图象是(  )
A、
B、
C、
D、

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=(x-1)sinx,x∈[-π,π]的图象为(  )
A、
B、
C、
D、

查看答案和解析>>

科目:高中数学 来源: 题型:

函数y=x2cosx部分图象可以为(  )
A、
B、
C、
D、

查看答案和解析>>

科目:高中数学 来源: 题型:

如图所示,点A,B,C是圆O上的三点,线段OC与线段AB交于圆内一点P,若
OC
=m
OA
+2m
OB
AP
AB
,则λ=(  )
A、
5
6
B、
4
5
C、
3
4
D、
2
3

查看答案和解析>>

同步练习册答案