精英家教网 > 高中数学 > 题目详情
数列{an}是等差数列,a1=f(x+1),a2=0,a3=f(x-1),其中f(x)=x2-4x+2,则通项公式an=(  )
A、-2n+4
B、-2n-4
C、2n-4或-2n+4
D、2n-4
考点:等差数列的通项公式
专题:等差数列与等比数列
分析:由已知条件得(x2-2x+1)+(x2-6x+7)=2x2-4x6=0,解得:x=1或x=3  当x=1时a1=-2,此时公差d=2,an=-2+(n-1)×2=2n-4;当x=3时a1=2,公差d=-2,an=2+(n-1)×(-2)=-2n+4.由此能求出结果.
解答: 解:∵f(x)=x2-4x+2,
a1=f(x+1)=(x+1)2-4(x+1)+2
=x2-2x-1,
a3=f(x-1)=(x-1)2-4(x-1)+2
=x2-6x+7,
又数列{an}是等差数列,a2=0
∴a1+a3=2a2=0,
∴(x2-2x+1)+(x2-6x+7)=2x2-4x6=0,
解得:x=1或x=3  
当x=1时a1=-2,此时公差d=2,an=-2+(n-1)×2=2n-4;
当x=3时a1=2,公差d=-2,an=2+(n-1)×(-2)=-2n+4.
∴an=2n-4或an=-2n+4.
故选:C.
点评:本题考查数列的通项公式的求法,是中档题,解题时要认真审题,注意函数性质的合理运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知角α的顶点在坐标原点,始边与x轴正半轴重合,终边经过点P(-3,4),则cosα等于
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=lnx+2x2+ax+1是单调递增函数,则实数a的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知cos(θ+
π
4
)=-
10
10
,θ∈(0,
π
2
),则cos2θ等于(  )
A、
3
10
B、-
3
10
C、
3
5
D、-
3
5

查看答案和解析>>

科目:高中数学 来源: 题型:

抛掷红、黄两颗骰子,当红色骰子的点数为4或6时,两颗骰子的点数之积大于20的概率是(  )
A、
1
4
B、
1
3
C、
1
2
D、
3
5

查看答案和解析>>

科目:高中数学 来源: 题型:

原点到直线3x+4y+5=0的距离为(  )
A、1B、2C、3D、4

查看答案和解析>>

科目:高中数学 来源: 题型:

设火箭发射成功的概率为0.99,若发射10次,其中失败的次数为X,则E(X)等于(  )
A、0.01
B、9.9
C、0.1
D、C
 
1
10
0.01k0.9910-k

查看答案和解析>>

科目:高中数学 来源: 题型:

若角α的终边在直线y=-2x上,且sina>0,则cosa值为(  )
A、
5
5
B、-
5
5
C、-
2
5
5
D、-2

查看答案和解析>>

科目:高中数学 来源: 题型:

如图所示,墙上挂有边长为2的正方形木板,它的四个角的空白部分都是以正方形的顶点为圆心,半径为1的圆孤,某人向此板投镖,假设每次都能击中木板,且击中木板上每个点的可能性都一样,则它击中阴影部分的概率是(  )
A、
π
4
B、
π
8
C、1-
π
4
D、1-
π
8

查看答案和解析>>

同步练习册答案