精英家教网 > 高中数学 > 题目详情
14.平面内动点P到两点A、B距离之比为常数λ(λ>0,λ≠1),则动点P的轨迹叫做阿波罗尼斯圆,若已知A(-2,0),B(2,0),λ=$\frac{1}{2}$,则此阿波尼斯圆的方程为(  )
A.x2+y2-12x+4=0B.x2+y2+12x+4=0C.x2+y2-$\frac{20}{3}$x+4=0D.x2+y2+$\frac{20}{3}$x+4=0

分析 由题意,设P(x,y),则$\frac{\sqrt{(x+2)^{2}+{y}^{2}}}{\sqrt{(x-2)^{2}+{y}^{2}}}$=$\frac{1}{2}$,化简可得结论.

解答 解:由题意,设P(x,y),则$\frac{\sqrt{(x+2)^{2}+{y}^{2}}}{\sqrt{(x-2)^{2}+{y}^{2}}}$=$\frac{1}{2}$,
化简可得x2+y2+$\frac{20}{3}$x+4=0,
故选:D.

点评 本题考查轨迹方程,考查学生的计算能力,比较基础.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

4.美团外卖和百度外卖两家公司其“骑手”的日工资方案如下:美团外卖规定底薪70元,每单抽成1元;百度外卖规定底薪100元,每日前45单无抽成,超出45单的部分每单抽成6元,假设同一公司的“骑手”一日送餐单数相同,现从两家公司个随机抽取一名“骑手”并记录其100天的送餐单数,得到如下条形图:

(Ⅰ)求百度外卖公司的“骑手”一日工资y(单位:元)与送餐单数n的函数关系;
(Ⅱ)若将频率视为概率,回答下列问题:
①记百度外卖的“骑手”日工资为X(单位:元),求X的分布列和数学期望;
②小明拟到这两家公司中的一家应聘“骑手”的工作,如果仅从日收入的角度考虑,请你利用所学的统计学知识为他作出选择,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知z=$\frac{i}{1+i}$-$\frac{1}{2i}$(i是虚数单位).那么复数z的虚部为(  )
A.$\frac{1}{2}$B.iC.1D.-1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知等差数列{an}的各项均为正数,其公差为2,a2a4=4a3+1.
(1)求{an}的通项公式;
(2)求a1+a3+a9+…+${a}_{{3}^{n}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.现用随机模拟方法近似计算积分${∫}_{0}^{2}$$\sqrt{1-\frac{{x}^{2}}{4}}$dx,先产生两组(每组1000个)在区间[0,2]上的均匀随机数x1,x2,x3,…,x1000和y1,y2,y3,…,y1000,由此得到1000个点(xi,yi)(i=1,2,…,1000),再数出其中满足$\frac{{x}_{i}^{2}}{4}$+${y}_{i}^{2}$≤1(i=1,2,…,1000)的点数400,那么由随机模拟方法可得积分${∫}_{0}^{2}$$\sqrt{1-\frac{{x}^{2}}{4}}$dx的近似值为(  )
A.1.4B.1.6C.1.8D.2.0

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知函数g(x)=lnx,f(x)=ag(x)+$\frac{a+1}{x}$-2(a+1),(a∈R).
(1)求函数f(x)的单调区间;
(2)将函数f(x)解析式中的g(x)改为g(x)的反函数得函数h(x),若x>0时,h(x)≥0.求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.设椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左、右焦点分别为F1、F2,上顶点为A,过A与AF2垂直的直线交x轴负半轴于Q点,且F1恰好是线段QF2的中点.
(1)若过A、Q、F2三点的圆恰好与直线3x-4y-7=0相切,求椭圆C的方程;
(2)在(1)的条件下,B是椭圆C的左顶点,过点R($\frac{3}{2}$,0)作与x轴不重合的直线l交椭圆C于E、F两点,直线BE、BF分别交直线x=$\frac{8}{3}$于M、N两点,若直线MR、NR的斜率分别为k1,k2,试问:k1k2是否为定值?若是,求出该定值;若不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.在△ABC中,角A,B,C的对边分别为a,b,c,已知(2a+2c-b)cosC=(a+c)cosB+bcosA,若c=3,则a+b的最大值为6.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.若$sinα=\frac{3}{5}(0<α<\frac{π}{2})$,则$sin(α+\frac{π}{6})$=(  )
A.$\frac{{3\sqrt{3}-4}}{10}$B.$\frac{{3\sqrt{3}+4}}{10}$C.$\frac{{3-4\sqrt{3}}}{10}$D.$\frac{{3+4\sqrt{3}}}{10}$

查看答案和解析>>

同步练习册答案