精英家教网 > 高中数学 > 题目详情

【题目】为调查某地人群年龄与高血压的关系,用简单随机抽样方法从该地区年龄在20~60岁的人群中抽取200人测量血压,结果如下:

高血压

非高血压

总计

年龄20到39岁

12

100

年龄40到60岁

52

100

总计

60

200

(1)计算表中的值;是否有99%的把握认为高血压与年龄有关?并说明理由.

(2)现从这60名高血压患者中按年龄采用分层抽样的方法抽取5人,再从这5人中随机抽取2人,求恰好一名患者年龄在20到39岁的概率.

附参考公式及参考数据: =

P(k2≥k0)

0.100

0.050

0.025

0.010

0.001

k0

2.706

3.841

5.024

6.635

10.828

【答案】(1)有99.9%的把握(2)

【解析】【试题分析】(1)依据题设条件及22联列表的数据建立方程求解;(2)借助题设条件运用列举法及古典概型计算公式求解:

(1) ,解得=88, =48; =52+ =140,

=≈30.857,

由于30.85710.828,所以有99.9%的把握认为“高血压与年龄有关”.

(2)由分层抽样方法知,年龄在20到39的患者中抽取的人数为1,设该人记为,年龄在40到60的患者中抽取的人数为4,这4人分别记为,任取2人有{ },{ },{ },{ },{ },{ },{ },{ },{ },{ }共10种不同的选法,其中恰含1名年龄在20到39高血压患者有{ },{ },{ },{ }共4种,

故选取的两名高血压患者中恰有含1名年龄在20到39的概率为=.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】解下列不等式:
(1)2x2+x﹣1<0
(2)<2.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2015年12月,华中地区数城市空气污染指数“爆表”,此轮污染为2015年以来最严重的污染过程,为了探究车流量与的浓度是否相关,现采集到华中某城市2015年12月份某星期星期一到星期日某一时间段车流量与的数据如表:

时间

星期一

星期二

星期三

星期四

星期五

星期六

星期日

车流量(万辆)

1

2

3

4

5

6

7

的浓度(微克/立方米)

28

30

35

41

49

56

62

(1)由散点图知具有线性相关关系,求关于的线性回归方程;(提示数据:

(2)(I)利用(1)所求的回归方程,预测该市车流量为12万辆时的浓度;(II)规定:当一天内的浓度平均值在内,空气质量等级为优;当一天内的浓度平均值在内,空气质量等级为良,为使该市某日空气质量为优或者为良,则应控制当天车流量不超过多少万辆?(结果以万辆为单位,保留整数)参考公式:回归直线的方程是,其中 .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(1)分别求函数在区间上的极值

(2)求证:对任意

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】用分层抽样的方法从某校学生中抽取一个容量为60的样本,其中高二年级抽取20人,高三年级抽取25人,已知该校高一年级共有800人,则该校学生总数为人.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(本小题满分8分) 已知抛物线Cy=-x2+4x-3

1)求抛物线C在点A0,-3)和点B30)处的切线的交点坐标;

2)求抛物线C与它在点A和点B处的切线所围成的图形的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=﹣2sin(2x+φ)(|φ|<π),若 ,则f(x)的一个单调递增区间可以是( )
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】先后2次抛掷一枚骰子,将得到的点数分别记为 .

(1)求直线与圆相切的概率;

(2)将 ,5的值分别作为三条线段的长,求这三条线段能围成等腰三角形的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】解答
(1)已知2sinx=sin( ﹣x),求 的值;
(2)求函数f(x)=ln(sinx﹣ )+ 的定义域.

查看答案和解析>>

同步练习册答案