精英家教网 > 高中数学 > 题目详情
4.不等式-4≤x2-3x<18的整数解为-2,-1,0,1,2,3,4,5..

分析 分别解出不等式-4≤x2-3x和x2-3x<18的解集,然后取交集,在此范围内去整数解.

解答 解:不等式-4≤x2-3x为x2-3x+4≥0,对应判别式△=9-16=-7<0,故此不等式的解集为R,
不等式x2-3x-18<0等价于(x-6)(x+3)<0,所以此不等式的解集为-3<x<6,
所以-4≤x2-3x<18的解集为-3<x<6,整数解为-2,-1,0,1,2,3,4,5.
故答案为:-2,-1,0,1,2,3,4,5.

点评 本题考查了一元二次不等式的解法;注意结合对应的二次函数求解集,更加直观.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

14.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}=1(a>b>0)$的右焦点为F,点P在椭圆上,且PF⊥x轴,|PF|=$\frac{1}{2}$,椭圆C的离心率为$\frac{\sqrt{3}}{2}$.
(Ⅰ)求椭圆C的方程;
(Ⅱ)若P1P2是椭圆上不同的两点,P1P2⊥x轴,圆E过F,P1,P2三点,且椭圆上任意一点都不在圆E内,求圆E的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.某公司在进行人才招聘时,有甲、乙、丙、丁、戊5人入围.从学历看,这5人中2人为硕士,3人为博士;从年龄看,这5人中有3人小于30岁,2人大于30岁,已知甲、丙属于相同的年龄段,而丁、戊属于不同的年龄段;乙、戊的学位相同,丙、丁的学位不同.最后,只有一位年龄大于30岁的硕士应聘成功,据此,可以推出应聘成功者是丁.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知在A-BCD的四面体中,AB⊥平面BCD,AD=3,CD=$\sqrt{2}$CB,则四面体A-BCD的最大体积为$\sqrt{6}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知过点A(1,m)恰能作曲线f(x)=x3-3x的两条切线,则m的值是-3或-2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.下列函数取得最大值、最小值的自变量x的集合,并分别写出最大值.
(1)y=-4tanx;
(2)y=1-$\frac{1}{3}$sinx.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.化简:(1+$\sqrt{x}$)5+(1-$\sqrt{x}$)5

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.设函数f(x)=aex-x-2(a∈R),其中e=2.71828…是自然对数的底数.
(1)求函数y=f(x)的极值;
(2)若函数y=f(x)的图象在点(0,f(0))处的切线与x轴平行,且x∈(0,+∝)时,kf′(x)-xf(x)<(x+1)2恒成立,求整数k的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.如图,在正方形ABCD中,AB=2,点E为BC的中点,点F在边CD上,若$\overrightarrow{AE}$•$\overrightarrow{BF}$=0,则$\overrightarrow{AE}$•$\overrightarrow{AF}$=4

查看答案和解析>>

同步练习册答案